Tìm số nguyên dương n sao cho:
\({\log _{2018}}2019 + {2^2}{\log _{\sqrt {2018} }}2019 + {3^2}{\log _{\sqrt[3]}}2019 + ... + {n^2}{\log _{\sqrt[n]}}2019\)
= 10102 . 20212 log 2018 2019
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
\({\log _{2018}}2019 + {2^2}{\log _{\sqrt {2018} }}2019 + {3^2}{\log _{\sqrt[3]}}2019 + ... + {n^2}{\log _{\sqrt[n]}}2019\)
\( = {\log _{2018}}2019 + {2^2}\,.\,2{\log _{2018}}2019 + {3^2}\,.\,3{\log _{2018}}2019 + ... + {n^2}\,.\,n{\log _{2018}}2019\)
= log 2018 2019 + 23 . log 2018 2019 + 33 . log 2018 2019 + … + n3 . log 2018 2019
= (13 + 23 + 33 + … + n3) log 2018 2019
Nên để \({\log _{2018}}2019 + {2^2}{\log _{\sqrt {2018} }}2019 + {3^2}{\log _{\sqrt[3]}}2019 + ... + {n^2}{\log _{\sqrt[n]}}2019\)
= 10102 . 20212 log 2018 2019 thì:
13 + 23 + 33 + … + n3 = 10102 . 20212
\( \Rightarrow {\left( {\frac{{{n^2} + n}}{2}} \right)^2} = {1010^2}\,.\,{2021^2}\)
\( \Rightarrow \frac{{n\left( {n + 1} \right)}}{2} = 1010\,.\,2021\)
Û n(n + 1) = 2 . 1010 . 2021 = 2020 . 2021
Þ n = 2020
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |