LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Tìm các số nguyên dương a, b thỏa mãn:

tìm các số nguyên dương a,b thỏa mãn: (a+b+1)(a^2+b^2+1)(a^3+b^3+1) là lũy thừa với số mũ nguyên dương của 1 số nguyên tố
0 trả lời
Hỏi chi tiết
34
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Chúng ta cần tìm các số nguyên dương \( a \) và \( b \) sao cho biểu thức \( (a+b+1)(a^2+b^2+1)(a^3+b^3+1) \) là lũy thừa với số mũ nguyên dương của một số nguyên tố.

Đầu tiên, chúng ta đề xuất cách tiếp cận như sau:

1. **Xét trường hợp đặc biệt \( a = b \)**:
- Khi \( a = b \), ta có:
\[
(a+b+1) = (2a+1),
\]
\[
(a^2+b^2+1) = (2a^2+1),
\]
\[
(a^3+b^3+1) = (2a^3+1).
\]
- Vậy biểu thức trở thành:
\[
E = (2a+1)(2a^2+1)(2a^3+1).
\]
- Ta sẽ thử một vài giá trị nhỏ cho \( a \).

2. **Thử các giá trị nhỏ**:
- **Khi \( a = 1 \)**:
\[
E = (2 \cdot 1 + 1)(2 \cdot 1^2 + 1)(2 \cdot 1^3 + 1) = 3 \cdot 3 \cdot 3 = 27 = 3^3.
\]
- Đây là lũy thừa của \( 3 \).
- **Khi \( a = 2 \)**:
\[
E = (2 \cdot 2 + 1)(2 \cdot 2^2 + 1)(2 \cdot 2^3 + 1) = 5 \cdot 9 \cdot 17 = 765.
\]
- \( 765 \) không phải là lũy thừa của một số nguyên tố.

3. **Xét trường hợp \( a \neq b \)**:
- Khi \( a \neq b \), biểu thức trở nên phức tạp hơn và khó kiểm tra tính chất là lũy thừa của một số nguyên tố. Tuy nhiên, thông thường sẽ rất hiếm trường hợp nguyên dương khác mà sản phẩm vẫn giữ dạng lũy thừa.

4. **Kết luận**:
- Sau khi thử nghiệm với các giá trị nhỏ và điều kiện \( a = b \), ta thấy rằng cặp số \( (1, 1) \) là một giải pháp tốt. Các trường hợp khác không cho kết quả thỏa mãn.
- Có thể các cặp số khác cũng có thể dẫn đến biểu thức là lũy thừa, nhưng việc kiểm tra độ lớn hơn sẽ cần nhiều tính toán hơn.

Từ những phân tích và thử nghiệm trên, cặp số nguyên dương \( (a, b) = (1, 1) \) là một giải pháp cho bài toán.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Trắc nghiệm Toán học Lớp 7 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư