Find the currents I1 and I2 in the circuit in Fig Tham khảo câu trả lời từ Trợ lý ảo Lazi To find the currents \( I_1 \) and \( I_2 \) and the voltage \( V_0 \) in the circuit from Figure P2.19, we can apply Kirchhoff's laws and Ohm's law. ### Step 1: Identify the Resistances and Total Current 1. The circuit consists of: - A current source of 1.5 A. - A 150 Ω resistor. - A 100 Ω resistor. - A 250 Ω resistor. ### Step 2: Apply Kirchhoff's Current Law (KCL) At the node where \( I_1 \) and \( I_2 \) meet: \[ I = I_1 + I_2 \] where \( I = 1.5 \, \text{A} \). ### Step 3: Analyze the Voltage Drops Using Ohm's Law \( V = IR \), we can express the voltage across each resistor: - For the 100 Ω resistor: \[ V_1 = 100 \, \Omega \times I_1 \] - For the 250 Ω resistor: \[ V_2 = 250 \, \Omega \times I_2 \] ### Step 4: Apply Kirchhoff's Voltage Law (KVL) Setting up KVL around the loop gives us: \[ 1.5 \, \text{A} \times 150 \, \Omega - V_1 - V_2 = 0 \] Substituting for \( V_1 \) and \( V_2 \): \[ 150 \times 1.5 - 100 I_1 - 250 I_2 = 0 \] \[ 225 - 100 I_1 - 250 I_2 = 0 \quad (1) \] ### Step 5: Substitute for \( I_1 \) From KCL: \[ I_1 = 1.5 - I_2 \quad (2) \] ### Step 6: Solve the Equations Substituting equation (2) into equation (1): \[ 225 - 100(1.5 - I_2) - 250 I_2 = 0 \] \[ 225 - 150 + 100 I_2 - 250 I_2 = 0 \] \[ 75 - 150 I_2 = 0 \] \[ 150 I_2 = 75 \] \[ I_2 = 0.5 \, \text{A} \] Now substitute \( I_2 \) back into equation (2): \[ I_1 = 1.5 - 0.5 = 1.0 \, \text{A} \] ### Summary of Currents - \( I_1 = 1.0 \, \text{A} \) - \( I_2 = 0.5 \, \text{A} \) ### Step 7: Find the Voltage \( V_0 \) To find the voltage \( V_0 \): Using the voltage across the 150 Ω resistor: \[ V_0 = 150 \times I_1 = 150 \times 1.0 = 150 \, \text{V} \] ### Summary of Results - \( I_1 = 1.0 \, \text{A} \) - \( I_2 = 0.5 \, \text{A} \) - \( V_0 = 150 \, \text{V} \)