Bài tập  /  Bài đang cần trả lời

Xét tính tuần hoàn và tìm chu kỳ cơ sở (nếu có) của các hàm số sau

giải chi tiết giúp mik ạ
----- Nội dung ảnh -----
Ví dụ 2. Xét tính tuần hoàn và tìm chu kỳ cơ sở (nếu có) của các hàm số sau

a) f(x) = cos( \frac{3x}{2} ) \cdot cos( \frac{x}{2} );

b) y = cos x + cos(\sqrt{3}x);

c) f(x) = sin(x^{2});

d) y = tan \sqrt{x}.
1 Xem trả lời
Hỏi chi tiết
83
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để xét tính tuần hoàn và tìm chu kỳ cơ sở của các hàm số đã cho, ta phân tích từng hàm số như sau:

### a) \( f(x) = \cos\left(\frac{3}{2}\cos\left(\frac{x}{2}\right)\right) \)
Hàm \( \cos \) là hàm tuần hoàn với chu kỳ cơ sở \( 2\pi \). Tuy nhiên, trong hàm này có sự biến đổi phức tạp do chứa thành phần \( \cos\left(\frac{x}{2}\right) \).

- Nhấn mạnh rằng \( \frac{x}{2} \) có chu kỳ là \( 4\pi \) (từ hàm \( \cos\)).
- Điều đó có nghĩa là \( \frac{3}{2}\cos\left(\frac{x}{2}\right) \) cũng tuần hoàn với chu kỳ \( 4\pi \).
- Do đó, \( f(x) \) tuần hoàn với chu kỳ cơ sở là \( 4\pi \).

### b) \( y = \cos x + \cos(\sqrt{3}x) \)
- Hàm \( \cos x \) có chu kỳ cơ sở là \( 2\pi \).
- Hàm \( \cos(\sqrt{3}x) \) có chu kỳ cơ sở là \( \frac{2\pi}{\sqrt{3}} \).

Để tìm chu kỳ chung \( T \), ta cần tìm bội chung nhỏ nhất của hai chu kỳ này:
- \( T_1 = 2\pi \)
- \( T_2 = \frac{2\pi}{\sqrt{3}} \)

Tính bội chung nhỏ nhất, ta đặt:
\[
T = k \cdot 2\pi = m \cdot \frac{2\pi}{\sqrt{3}}
\]
Giải ra sẽ cho kết quả chu kỳ cơ sở là \( 2\pi\sqrt{3} \).

### c) \( f(x) = \sin\left(x^2\right) \)
Hàm này không tuần hoàn vì biến \( x^2 \) không tạo ra sự lặp lại của giá trị hàm số.

### d) \( y = \tan\sqrt{x} \)
Hàm \( \tan \) có chu kỳ là \( \pi \), nhưng với biến đổi \( \sqrt{x} \), hàm này không tuần hoàn. Hàm tangent sẽ không lặp lại giá trị của nó qua trục \( x \) do sự tăng trưởng của \( \sqrt{x} \).

### Kết luận
- **a)** Chu kỳ cơ sở: \( 4\pi \)
- **b)** Chu kỳ cơ sở: \( 2\pi\sqrt{3} \)
- **c)** Không tuần hoàn.
- **d)** Không tuần hoàn.
1
0
Phonggg
05/10/2024 05:35:05
+5đ tặng

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Câu hỏi liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×