Bài tập  /  Bài đang cần trả lời

Trong không gian với hệ trục tọa độ \(Oxyz\), cho \(\overrightarrow {OA} = 3\overrightarrow i - \overrightarrow k \) với \(\overrightarrow i ,\overrightarrow k \) là hai vectơ đơn vị trên hai trục tọa độ \(Ox,Oz\), hai điểm \(B\left( { - 1;2;3} \right),C\left( {1;4;1} \right)\). a) \(A\left( {3;0; - 1} \right)\). b) Ba điểm \(A,B,C\) thẳng hàng. c) Điểm \(D\left( {a;b;c} \right)\) là điểm đối xứng với \(A\) qua \(B\). Khi đó \(a + b + c = 6\). d) Điểm \(M\left( {m;n;p} \right)\) trên mặt phẳng ...

Trong không gian với hệ trục tọa độ \(Oxyz\), cho \(\overrightarrow {OA} = 3\overrightarrow i - \overrightarrow k \) với \(\overrightarrow i ,\overrightarrow k \) là hai vectơ đơn vị trên hai trục tọa độ \(Ox,Oz\), hai điểm \(B\left( { - 1;2;3} \right),C\left( {1;4;1} \right)\).

a) \(A\left( {3;0; - 1} \right)\).

b) Ba điểm \(A,B,C\) thẳng hàng.

c) Điểm \(D\left( {a;b;c} \right)\) là điểm đối xứng với \(A\) qua \(B\). Khi đó \(a + b + c = 6\).

d) Điểm \(M\left( {m;n;p} \right)\) trên mặt phẳng \(\left( {Oxy} \right)\) sao cho \(M{A^2} + M{B^2} + M{C^2}\) đạt giá trị nhỏ nhất. Khi đó \(2m - n + 2024p = 0\).

1 trả lời
Hỏi chi tiết
13
0
0
Phạm Minh Trí
13/12 11:29:09

a) Đ,  b) S,  c) Đ, d) Đ

a) Vì \(\overrightarrow {OA} = 3\overrightarrow i - \overrightarrow k \Rightarrow A\left( {3;0; - 1} \right)\).

b) Ta có \(\overrightarrow {AB} = \left( { - 4;2;4} \right),\overrightarrow {AC} = \left( { - 2;4;2} \right)\).

Do \(\overrightarrow {AB} ,\overrightarrow {AC} \) không cùng phương nên suy ra \(A,B,C\) không thẳng hàng.

c) Điểm \(D\left( {a;b;c} \right)\) là điểm đối xứng với \(A\) qua \(B\) nên \(B\) là trung điểm của \(AD\).

Ta có \(\left\{ \begin{array}{l}{x_D} = 2{x_B} - {x_A} = - 5\\{y_D} = 2{y_B} - {y_A} = 4\\{z_D} = 2{z_B} - {z_A} = 7\end{array} \right.\). Suy ra \(D\left( { - 5;4;7} \right)\).

Suy ra \(a = - 5;b = 4;c = 7\). Vậy \(a + b + c = 6\).

d) Gọi \(I\left( {x;y;z} \right)\) là điểm thỏa mãn \(\overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {IC} = \overrightarrow 0 \).

Ta có \(\left\{ \begin{array}{l}3 - x - 1 - x + 1 - x = 0\\0 - y + 2 - y + 4 - y = 0\\ - 1 - z + 3 - z + 1 - z = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\\z = 1\end{array} \right. \Rightarrow I\left( {1;2;1} \right)\).

Ta có \(M{A^2} + M{B^2} + M{C^2}\)\( = {\left( {\overrightarrow {MI} + \overrightarrow {IA} } \right)^2} + {\left( {\overrightarrow {MI} + \overrightarrow {IB} } \right)^2} + {\left( {\overrightarrow {MI} + \overrightarrow {IC} } \right)^2}\)

\( = 3M{I^2} + I{A^2} + I{B^2} + I{C^2} + 2\overrightarrow {MI} \left( {\overrightarrow {IA} + \overrightarrow {IB}  + \overrightarrow {IC} } \right)\)\( = 3M{I^2} + I{A^2} + I{B^2} + I{C^2}\).

Do \(I{A^2} + I{B^2} + I{C^2}\) không thay đổi nên \(M{A^2} + M{B^2} + M{C^2}\) nhỏ nhất khi \(MI\) nhỏ nhất hay \(M\) là hình chiếu của điểm \(I\) trên mặt phẳng \(\left( {Oxy} \right)\).

Do đó \(M\left( {1;2;0} \right)\). Suy ra \(m = 1;n = 2;p = 0\). Vậy \(2m - n + 2024p = 2 - 2 + 0 = 0\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k