Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bài 10 trang 62 Sách bài tập Toán 9 Tập 1: Chứng minh rằng hàm số bậc nhất y = ax + b đồng biến khi a > 0 và nghịch biến khi a < 0
Lời giải:
Xét hàm số bậc nhất y = ax + b (a ≠ 0) trên tập số thực R
Với hai số x1 và x2 thuộc R và x1 < x2, ta có:
y1 = a1 + b
y2 = a2 + b
y2 – y1 = (ax2 + b) – (ax1 + b) = a(x2 – x1) (1)
*Trường hợp a > 0:
Ta có: x1 < x2 suy ra: x2 – x1 > 0 (2)
Từ (1) và (2) suy ra: y2 – y1 = a(x2 – x1) > 0 ⇒ y2 > y1
Vậy hàm số đồng biến khi a > 0
*Trường hợp a < 0:
Ta có: x1 < x2 suy ra: x2 – x1 > 0 (3)
Từ (1) và (3) suy ra: y2 – y1 = a(x2 – x1) < 0 ⇒ y2 < y1
Vậy hàm số nghịch biến khi a < 0
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |