LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

14/12/2023 21:16:14

Tứ giác ABDC là hình gì? Vì sao?

----- Nội dung dịch tự động từ ảnh -----
Bài 9: Cho AABC vuông tại A (AB < AC), trung tuyến AM, đường cao AH. Trên tia
đối của tia MA lấy điểm D sao cho MD = MA
a) Tứ giác ABDC là hình gì? Vì sao?
b) Vẽ I sao cho H là trung điểm của AI. Chứng minh BC // ID
c) Chứng minh tứ giác BIDC là hình thang cân
d) Vẽ HE I AB tại E, HF 1 AC tại F. Chứng minh AM L EF
1 trả lời
Hỏi chi tiết
71
0
0
_Jinho_
14/12/2023 21:28:58
+5đ tặng

a)

Ta có: MA=MD(gt)

mà A,M,D thẳng hàng

nên M là trung điểm của AD

Xét tứ giác ABDC có

M là trung điểm của đường chéo BC(AM là đường trung tuyến ứng với cạnh BC trong ΔABC)

M là trung điểm của đường chéo AD(cmt)

Do đó: ABDC là hình bình hành(dấu hiệu nhận biết hình bình hành)

Xét hình bình hành ABDC có ˆBAC=900���^=900(ΔABC vuông tại A)

nên ABDC là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)

b) Ta có: I đối xứng với A qua BC(gt)

⇔BC là đường trung trực của AI

⇔BC⊥AI tại trung điểm của AI

mà BC⊥AH tại H(gt)

và AI, AH có điểm chung là A

nên A,H,I thẳng hàng

⇔H∈AI

mà H∈BC(gt)

nên AI∩∩BC={H}

mà BC cắt AI tại trung điểm của AI(cmt)

nên H là trung điểm của AI

Xét ΔADI có

M là trung điểm của AD(cmt)

H là trung điểm của AI(cmt)

Do đó: MH là đường trung bình của ΔADI(định nghĩa đường trung bình của tam giác)

⇔MH//DI và MH=DI2��=��2(định lí 2 về đường trung bình của tam giác)

Ta có: MH//DI(cmt)

mà M∈BC(gt)

vả H∈BC(gt)

nên BC//DI(đpcm)

c) Ta có: AC=DB(hai cạnh đối của hình chữ nhật ABDC)(1)

Xét ΔCAI có

CH là đường cao ứng với cạnh AI(CB⊥AI, H∈BC)

CH là đường trung tuyến ứng với cạnh AI(H là trung điểm của AI)

Do đó: ΔCAI cân tại C(định lí tam giác cân)

⇒CA=CI(2)

Từ (1) và (2) suy ra DB=CI

Xét tứ giác BIDC có DI//BC(cmt)

nên BIDC là hình thang(định nghĩa hình thang)

Xét hình thang BIDC có DB=CI(cmt)

nên BIDC là hình thang cân(dấu hiệu nhận biết hình thang cân)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư