----- Nội dung dịch tự động từ ảnh ----- "(cars10° + Coos 80) + (Cars 30°+ (60°) ссо winch tong / tich M: Cas 10° + cas 30°+ + cao 1500 thao 170
0 trả lời
18 Tham khảo câu trả lời từ Trợ lý ảo Lazi The image contains a mathematical expression written in Vietnamese. The task is to calculate the sum or product of the given trigonometric terms. The expression is: \[ M = \cos 10^\circ + \cos 30^\circ + \ldots + \cos 150^\circ + \cos 170^\circ \] To calculate the sum of these cosine values, you can use the sum-to-product identities or numerical methods. However, the exact sum of these cosines is not straightforward to compute by hand due to the irregular intervals. For a numerical approach, you can use a calculator or a programming tool to find the approximate sum: \[ \cos 10^\circ + \cos 30^\circ + \cos 50^\circ + \cos 70^\circ + \cos 90^\circ + \cos 110^\circ + \cos 130^\circ + \cos 150^\circ + \cos 170^\circ \] Using a calculator: \[ \begin{align*} \cos 10^\circ & \approx 0.9848 \\ \cos 30^\circ & \approx 0.8660 \\ \cos 50^\circ & \approx 0.6428 \\ \cos 70^\circ & \approx 0.3420 \\ \cos 90^\circ & = 0 \\ \cos 110^\circ & \approx -0.3420 \\ \cos 130^\circ & \approx -0.6428 \\ \cos 150^\circ & \approx -0.8660 \\ \cos 170^\circ & \approx -0.9848 \\ \end{align*} \] Adding these values together: \[ 0.9848 + 0.8660 + 0.6428 + 0.3420 + 0 - 0.3420 - 0.6428 - 0.8660 - 0.9848 = 0 \] So, the sum \( M \) of these cosines is approximately 0.