Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Xét ΔABC có
M là trung điểm của BC(AM là đường trung tuyến ứng với cạnh đáy BC trong ΔABC)
MQ//AB(gt)
Do đó: Q là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)
⇒AQ=AC/2(1)⇒AQ=2AC(1)
Xét ΔABC có
M là trung điểm của AM(AM là đường trung tuyến ứng với cạnh đáy BC trong ΔABC)
MP//AC(gt)
Do đó: P là trung điểm của AB(Định lí 1 về đường trung bình của tam giác)
⇒AP=AB/2(2)⇒AP=2AB(2)
Ta có: ΔABC cân tại A(gt)
a có: ΔABC cân tại A(gt)
nên AB=AC(3)
Từ (1), (2) và (3) suy ra AP=AQ
Xét tứ giác APMQ có
MP//AQ(MP//AC, Q∈AC)
MQ//AP(MQ//AB, P∈AB)
Do đó: APMQ là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành APMQ có AP=AQ(cmt)
nên APMQ là hình thoi(Dấu hiệu nhận biết hình thoi)
b) Xét ΔABC có
P là trung điểm của AB(cmt)
Q là trung điểm của AC(cmt)
Do đó: PQ là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒PQ//BC và PQ=BC/2(Định lí 2 về đường trung bình của tam giác)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |