Bài tập  /  Bài đang cần trả lời

Cho Parabol (P): y = x2 và đường thẳng (d) : y = 2(m + 3)x – 2m + 2 (m là tham số, m thuộc R). a) Với m = - 5 tìm tọa độ giao điểm của parabol (P) và đường thẳng (d). b) Chứng minh rằng: Parabol (P) và đường thẳng (d) cắt nhau tại hai điểm phân biệt với mọi m. Tìm m để (d) cắt (P) tại hai điểm cùng nằm bên phải trục tung.

Cho Parabol (P): y = x2 và đường thẳng (d) : y = 2(m + 3)x – 2m + 2 (m là tham số, m thuộc R).

a) Với m = - 5 tìm tọa độ giao điểm của parabol (P) và đường thẳng (d).

b) Chứng minh rằng: Parabol (P) và đường thẳng (d) cắt nhau tại hai điểm phân biệt với mọi m. Tìm m để (d) cắt (P) tại hai điểm cùng nằm bên phải trục tung.

1 trả lời
Hỏi chi tiết
10
0
0
Đặng Bảo Trâm
10/09 18:02:12

a) m = -5 thì (d): y = -4x + 12

Xét phương trình hoành độ giao điểm:

x2 = -4x + 12

⇒ x^2 + 4x-12= 0

⇒ x= 2 hoặc x= -6

Với x = 2 ⇒ y = 4

Với x = -6 ⇒ y = 36

Vậy 2 điểm cần tìm là (2; 4) và (-6; 36).

b) Phương trình hoành độ giao điểm (d) và (P) là:

x2 = 2(m + 3)x – 2m + 2

⇔ x2 – 2(m + 3)x + 2m – 2 = 0 (*)

∆' = (m + 3)2 – (2m – 2) = m2 + 4m + 11 = (m + 2)2 + 7 > 0 với mọi m

Nên phương trình (*) luôn có 2 nghiệm phân biệt

Theo định lý Vi-ét: x1+x2=2m+3x1x2=2m−2

Để (d) cắt (P) tại hai điểm cùng nằm bên phải trục tung thì hai điểm có hoành độ dương

Suy ra: x1+x2=2m+3>0x1x2=2m−2>0⇒m>−3m>1⇒m>1.

Vậy m > 1 thì (d) cắt (P) tại hai điểm cùng nằm bên phải trục tung.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k