LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA; I, J, K, L lần lượt là trung điểm của các đoạn thẳng SM, SN, SP, SQ. a) Chứng minh rằng bốn điểm I, J, K, L đồng phẳng và tứ giác IJKL là hình bình hành. b) Chứng minh rằng IK // BC. c) Xác định giao tuyến của hai mặt phẳng (IJKL) và (SBC).

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA; I, J, K, L lần lượt là trung điểm của các đoạn thẳng SM, SN, SP, SQ.

a) Chứng minh rằng bốn điểm I, J, K, L đồng phẳng và tứ giác IJKL là hình bình hành.

b) Chứng minh rằng IK // BC.

c) Xác định giao tuyến của hai mặt phẳng (IJKL) và (SBC).

1 trả lời
Hỏi chi tiết
40
0
0
Tôi yêu Việt Nam
10/09 22:16:14

Lời giải

a)

Trong tam giác SMN, có: IJ // MN (tính chất đường trung bình) và IJ = \(\frac{1}{2}\)MN.

Trong tam giác SQP, có: LK // QP (tính chất đường trung bình) và LK = \(\frac{1}{2}\)PQ.

Mà QP // AC // MN (tính chất đường trung bình) và PQ = MN = \(\frac{1}{2}\)AC

Do đó IJ // LK  và IJ = LK

Vậy qua hai đường thẳng song song ta xác định được duy nhất một mặt phẳng chứa hai đường thẳng song song đó hay I, J, K, L đồng phẳng.

Xét tứ giác IJKL có IJ // LK và IJ = LK nên IJKL là hình bình hành.

b)

Trong tam giác SMP có: IK // MP (tính chất đường trung bình tam giác SMP)

Mà MP // AD // BC (tính chất đường trung bình của hình thang)

Suy ra IK // BC.

c) Ta có: J ∈ SN mà SN ⊂ (SBC) nên J ∈ (SBC)

Lại có J ∈ (IJKL)

Do đó J là giao điểm của (IJKL) và (SBC).

Mặt khác: IK // BC (chứng minh trên);

                 IK ⊂ (IJKL);

                 BC ⊂ (SBC).

Do đó giao tuyến của hai mặt phẳng (IJKL) và (SBC) là đường thẳng đi qua J song song với BC cắt SB, SC lần lượt tại B’ và C’.

Vậy (IJKL) ∩ (SBC) = B’C’.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 11 mới nhất
Trắc nghiệm Toán học Lớp 11 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư