LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Từ một điểm A nằm ngoài đường tròn (O; R) vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M bất kỳ, vẽ MI vuông góc với AB, MK vuông góc với AC (I thuộc AB, K thuộc AC). a) Chứng minh AIMK, ABOC là các tứ giác nội tiếp; b) Vẽ MP vuông góc với BC (P thuộc BC). Chứng minh \(\widehat {MPK} = \widehat {MBC}\); c) Chứng minh MI.MK = MP2; d) Xác định vị trí của điểm M trên cung nhỏ BC để tích MI.MK.MP đạt giá trị lớn nhất.

Từ một điểm A nằm ngoài đường tròn (O; R) vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M bất kỳ, vẽ MI vuông góc với AB, MK vuông góc với AC (I thuộc AB, K thuộc AC).

a) Chứng minh AIMK, ABOC là các tứ giác nội tiếp;

b) Vẽ MP vuông góc với BC (P thuộc BC). Chứng minh \(\widehat {MPK} = \widehat {MBC}\);

c) Chứng minh MI.MK = MP2;

d) Xác định vị trí của điểm M trên cung nhỏ BC để tích MI.MK.MP đạt giá trị lớn nhất.

1 trả lời
Hỏi chi tiết
9
0
0

Lời giải

a) Ta có: \(\left\{ \begin{array}{l}MI \bot AB\;\;\;\,\left( {gt} \right)\\MK \bot AC\;\;\left( {gt} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\widehat {AIM} = 90^\circ \\\widehat {AKM} = 90^\circ \end{array} \right.\).

Tứ giác AIMK có: \(\widehat {AIM} + \widehat {AKM} = 90^\circ  + 90^\circ = 180^\circ \).

Þ AIMK nội tiếp đường tròn đường kính AM (đpcm).

b) Ta có: MP ^ BC (gt) \( \Rightarrow \widehat {MPC} = 90^\circ \).

MK ^ AC (gt) \( \Rightarrow \widehat {MKC} = 90^\circ \)

\( \Rightarrow \widehat {MPC} + \widehat {MKC} = 90^\circ + 90^\circ = 180^\circ \)

Þ CPMK nội tiếp đường tròn.

\( \Rightarrow \widehat {MPK} = \widehat {MCK}\) (Hai góc nội tiếp cùng chắn cung MK).

Mặt khác \(\widehat {MCK} = \widehat {MBC}\) (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung MC)

\( \Rightarrow \widehat {MPK} = \widehat {MBC}\;\left( { = \widehat {MCK}} \right)\) (đpcm)

c) Ta có: \(\widehat {MIB} + \widehat {MPB} = 90^\circ + 90^\circ = 180^\circ \)

Þ BPMI là tứ giác nội tiếp

\( \Rightarrow \widehat {MIP} = \widehat {MBC}\) (hai góc nội tiếp cùng chắn cung MP)

Mà \(\widehat {MPK} = \widehat {MBC}\) (cmt)

\( \Rightarrow \widehat {MPK} = \widehat {MIP}\;\left( { = \widehat {MBC}} \right)\).

Tương tự ta cũng chứng minh được \(\widehat {MPI} = \widehat {MKP}\;\left( { = \widehat {MCB} = \widehat {MBI}} \right)\).

Xét ∆MIP và ∆MPK có:

\(\widehat {MPI} = \widehat {MKP}\) (cmt)

\(\widehat {MIP} = \widehat {MPK}\) (cmt)

Þ ∆MIP ᔕ ∆MPK (g.g)

\( \Rightarrow \frac = \frac \Rightarrow MI.MK = M{P^2}\) (đpcm)

d) Ta có: \(MI\,\,.\,\,MK = M{P^2}\)

\( \Rightarrow MI\,\,.\,\,MK\,\,.\,\,MP = M{P^3}\).

Để tích MI . MK . MP đạt GTLN Û MP đạt GTLN.

Gọi H là hình chiếu của O lên BC Þ OH là hằng số (do BC cố định).

Gọi MO Ç BC = {D}.

Ta có: MP £ MD; OH £ OD

Þ MP + OH £ MD + OD = MO

Þ MP + OH £ R

Þ MP £ R − OH

Þ MP lớn nhất bằng R − OH

Û O, H, M thẳng hàng hay M bằm chính giữa cung nhỏ BC.

Vậy khi M nằm chính giữa cung nhỏ BC thì tích MI . MK . MP đạt GTLN.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư