Cho đoạn thẳng AB. Gọi d là đường trung trực của AB. Trên đường thẳng d lấy điểm M bất kì. Trong mặt phẳng lấy đểm C sao cho BC < CA.
a) So sánh MB + MC với CA;
b) Tìm vị trí của M trên d sao cho MB + MC nhỏ nhất.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) M thuộc đường trung trực d của AB nên MA = MB (tính chất đường trung trực của đoạn thẳng)
Suy ra MB + MC = MA + MC.
Trong tam giác MAC, ta có: MA + MC > AC.
Vậy MB + MC > AC (0,5 điểm)
b) Vì CB < CA nên C và B nằm trong cùng một nửa mặt phẳng bờ d.
Nên A và C nằm trong hai nửa mặt phẳng bờ d khác nhau.
Do đó d cắt AC tại H.
Vậy khi M ≡ H thì: MB + MC = HB + HC = HA + HC
=> MB + MC = AC
Vậy ta có MB + MC AC
Khi M trùng với H thì HB + HC = AC.
Tức là MB + MC nhỏ nhất khi M H là giao điểm của AC với d.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |