(H.5.8) Trong không gian Oxyz, cho mặt phẳng (α) không đi qua gốc tọa độ và cắt ba trục Ox, Oy, Oz tương ứng tại các điểm A(a; 0; 0), B(0; b; 0), C(0; 0; c) (a, b, c ≠ 0).
Chứng minh rằng mặt phẳng (α) có phương trình: xa+yb+zc=1.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Mặt phẳng (α) nhận \(\overrightarrow {AB} = \left( { - a;b;0} \right)\) và \(\overrightarrow {AC} = \left( { - a;0;c} \right)\) làm một cặp vectơ chỉ phương. Do đó mặt phẳng (α) nhận \(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}b&0\\0&c\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{ - a}\\c&{ - a}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - a}&b\\{ - a}&0\end{array}} \right|} \right) = \left( {bc;ca;ba} \right)\)làm một vectơ pháp tuyến.
Khi đó phương trình mặt phẳng (α) đi qua điểm A(a; 0; 0) và nhận \(\overrightarrow n = \left( {bc;ca;ba} \right)\)làm vectơ pháp tuyến có dạng: bc(x – a) + cay + baz = 0 Û bcx + cay + baz = abc
\( \Leftrightarrow \frac + \frac + \frac = 1\)\( \Leftrightarrow \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |