Cho hình chóp S.ABCD có ABCD là hình thang, đáy lớn BC với BC = 2a, AD = AB = a, mặt bên (SAD) là tam giác đều. Lấy điểm M trên cạnh AB sao cho MB = 2AM. Mặt phẳng (α) đi qua M và song song với SA, BC. Xác định thiết diện của hình chóp bị cắt bởi mặt phẳng (α) và tính diện tích của thiết diện đó.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
+) Dựng thiết diện:
Qua M kẻ MQ song song BC (Q ∈ DC), kẻ MN song song SA (N ∈ SB)
Qua N kẻ NP song song BC (P ∈ SC)
Khi đó, (MNPQ) là mặt phẳng qua M và song song BC, SA
⇒ (MNPQ) ≡ (α)
Thiết diện của hình chóp bị cắt bởi mặt phẳng (α) là tứ giác MNPQ.
+) Tính diện tích thiết diện:
Ta có: NP // MQ (cùng song song BC) ⇒ MNPQ là hình thang
ΔSAD đều ⇒ SA = SD = AD = a
ABCD là hình thang, MQ // BC ⇒ \(\frac = \frac = \frac = \frac{2}{3}\)
MN // SA ⇒ \(\frac = \frac = \frac{2}{3}\) ⇒ \(MN = \frac{2}{3}SA = \frac{2}{3}a\)
NP // BC ⇒ \(\frac = \frac{1}{3}\) ⇒ \(NP = \frac{1}{3}BC = \frac{2}{3}a\) và \(\frac = \frac = \frac{2}{3}\) ⇒ \(\frac = \frac = \frac{2}{3}\)
⇒ \(\frac = \frac{2}{3}\) ⇒ \(PQ = \frac{2}{3}SD = \frac{2}{3}a.\)
Gọi I, J lần lượt là trung điểm của BM và CQ.
Giả sử MQ có độ dài bằng x. Khi đó, do IJ là đường trung bình của hình thang BCQM
⇒ \(IJ = \frac{2} = \frac{2}\)
Do MQ là đường trung bình của hình thang IJDA ⇒ 2MQ = IJ + AD
⇔ \(2x = \frac{2} + a\) ⇔ 4x = x + 2a + 2a ⇔ \(x = \frac{4}{3}a\)
⇒ \(MQ = \frac{4}{3}a\)
Xét hình thang MNPQ có: NP = MN = PQ = \(\frac{2}{3}a,\) \(MQ = \frac{4}{3}a\) ⇒ MNPQ là hình thang cân.
Kẻ MH, NK vuông góc với PQ (H, K ∈ PQ)
⇒ \(QH = PK = \frac{2} = \frac{{\frac{4}{3}a - \frac{2}{3}a}}{2} = \frac{a}{3}\)
⇒ \(MH = \sqrt {M{Q^2} - Q{H^2}} = \sqrt {{{\left( {\frac{2}{3}a} \right)}^2} - {{\left( {\frac{1}{3}a} \right)}^2}} = \sqrt {\frac{{{a^2}}}{3}} = \frac{{a\sqrt 3 }}{3}.\)
Diện tích hình thang MNPQ: \(S = \frac{1}{2}\left( {MN + PQ} \right).MH = \frac{1}{2}.\left( {\frac{2}{3}a + \frac{4}{3}a} \right).\frac{{a\sqrt 3 }}{3} = \frac{{{a^2}\sqrt 3 }}{3}.\)
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |