LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a và \(\widehat {SBA} = \widehat {SCA} = 90^\circ .\) Biết góc giữa SA và mặt đáy bằng \(45^\circ .\) Tính khoảng cách giữa hai đường thẳng SB và AC.

Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a và \(\widehat {SBA} = \widehat {SCA} = 90^\circ .\) Biết góc giữa SA và mặt đáy bằng \(45^\circ .\) Tính khoảng cách giữa hai đường thẳng SB và AC.

1 trả lời
Hỏi chi tiết
11
0
0
Tô Hương Liên
11/09 14:21:23

Trong ∆ABC gọi I là trung điểm của BC.

Gọi AH là đường kính đường tròn ngoại tiếp ∆ABC.

Suy ra HB ⊥ AB, HC ⊥ AC.

Ta có: \(\left\{ {\begin{array}{*{20}{c}}{BH \bot AB}\\{SB \bot AB}\end{array}} \right.\) ⇒ AB ⊥ (SBH) ⇒ AB ⊥ SH.

Chứng minh tương tự ta có: AC ⊥ SH.

Suy ra SH ⊥ (ABC)

Trong ∆ABC kẻ đường thẳng qua B song song với AC cắt HC tại M.

Ta có: AC // BM ⇒ d(SB; AC) = d(AC; (SBM)) = d(C; (SBM)).

Ta có CH ⊥ AC ⇒ CM ⊥ BM.

Xét tam giác vuông ACH có: \(CH = AC.\tan 30^\circ = \frac{{a\sqrt 3 }}{3}.\)

Xét tam giác vuông BCM có: \(CM = BC.\cos 30^\circ = \frac{{a\sqrt 3 }}{2}.\)

CH ∩ (SBM) = M ⇒ \(\frac{{d\left( {H;\left( {SBM} \right)} \right)}}{{d\left( {C;\left( {SBM} \right)} \right)}} = \frac = 1 - \frac = 1 - \frac{{\frac{{a\sqrt 3 }}{3}}}{{\frac{{a\sqrt 3 }}{2}}} = \frac{1}{3}\)

Trong ∆SHM kẻ HK ⊥ SM (K ∈ SM) ta có:

\(\left\{ {\begin{array}{*{20}{c}}{BM \bot HM}\\{BM \bot SH}\end{array}} \right.\) ⇒ BM ⊥ (SHM) ⇒ BM ⊥ HK

\(\left\{ {\begin{array}{*{20}{c}}{HK \bot BM}\\{HK \bot SM}\end{array}} \right.\) ⇒ HK ⊥ (SBM) ⇒ d(H; (SBM)) = HK

Ta có: \(\left( {\widehat {SA;\left( {ABC} \right)}} \right) = \left( {\widehat {SA;HA}} \right) = \widehat {SAH} = 45^\circ \)

⇒ ∆SAH vuông cân tại H

⇒ \(SH = AH = \frac{{\cos 30^\circ }} = \frac{{2a\sqrt 3 }}{3}\); \(HM = \frac{1}{3}CM = \frac{{a\sqrt 3 }}{6}.\)

Áp dụng hệ thức lượng trong tam giác vuông SHM ta có:

\(HK = \frac{{SH\,.\,HM}}{{\sqrt {S{H^2} + H{M^2}} }} = \frac{{\frac{{2a\sqrt 3 }}{3} \cdot \frac{{a\sqrt 3 }}{6}}}{{\sqrt {\frac{{12{a^2}}}{9} + \frac{{3{a^2}}}} }} = \frac{{\frac{{{a^2}}}{3}}}{{\frac{{a\sqrt {51} }}{6}}} = \frac{{2a\sqrt {51} }}.\)

Vậy \(d\left( {SB;AC} \right) = \frac{{2a\sqrt {51} }}.\)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư