Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a và \(\widehat {SBA} = \widehat {SCA} = 90^\circ .\) Biết góc giữa SA và mặt đáy bằng \(45^\circ .\) Tính khoảng cách giữa hai đường thẳng SB và AC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Trong ∆ABC gọi I là trung điểm của BC.
Gọi AH là đường kính đường tròn ngoại tiếp ∆ABC.
Suy ra HB ⊥ AB, HC ⊥ AC.
Ta có: \(\left\{ {\begin{array}{*{20}{c}}{BH \bot AB}\\{SB \bot AB}\end{array}} \right.\) ⇒ AB ⊥ (SBH) ⇒ AB ⊥ SH.
Chứng minh tương tự ta có: AC ⊥ SH.
Suy ra SH ⊥ (ABC)
Trong ∆ABC kẻ đường thẳng qua B song song với AC cắt HC tại M.
Ta có: AC // BM ⇒ d(SB; AC) = d(AC; (SBM)) = d(C; (SBM)).
Ta có CH ⊥ AC ⇒ CM ⊥ BM.
Xét tam giác vuông ACH có: \(CH = AC.\tan 30^\circ = \frac{{a\sqrt 3 }}{3}.\)
Xét tam giác vuông BCM có: \(CM = BC.\cos 30^\circ = \frac{{a\sqrt 3 }}{2}.\)
CH ∩ (SBM) = M ⇒ \(\frac{{d\left( {H;\left( {SBM} \right)} \right)}}{{d\left( {C;\left( {SBM} \right)} \right)}} = \frac = 1 - \frac = 1 - \frac{{\frac{{a\sqrt 3 }}{3}}}{{\frac{{a\sqrt 3 }}{2}}} = \frac{1}{3}\)
Trong ∆SHM kẻ HK ⊥ SM (K ∈ SM) ta có:
\(\left\{ {\begin{array}{*{20}{c}}{BM \bot HM}\\{BM \bot SH}\end{array}} \right.\) ⇒ BM ⊥ (SHM) ⇒ BM ⊥ HK
\(\left\{ {\begin{array}{*{20}{c}}{HK \bot BM}\\{HK \bot SM}\end{array}} \right.\) ⇒ HK ⊥ (SBM) ⇒ d(H; (SBM)) = HK
Ta có: \(\left( {\widehat {SA;\left( {ABC} \right)}} \right) = \left( {\widehat {SA;HA}} \right) = \widehat {SAH} = 45^\circ \)
⇒ ∆SAH vuông cân tại H
⇒ \(SH = AH = \frac{{\cos 30^\circ }} = \frac{{2a\sqrt 3 }}{3}\); \(HM = \frac{1}{3}CM = \frac{{a\sqrt 3 }}{6}.\)
Áp dụng hệ thức lượng trong tam giác vuông SHM ta có:
\(HK = \frac{{SH\,.\,HM}}{{\sqrt {S{H^2} + H{M^2}} }} = \frac{{\frac{{2a\sqrt 3 }}{3} \cdot \frac{{a\sqrt 3 }}{6}}}{{\sqrt {\frac{{12{a^2}}}{9} + \frac{{3{a^2}}}} }} = \frac{{\frac{{{a^2}}}{3}}}{{\frac{{a\sqrt {51} }}{6}}} = \frac{{2a\sqrt {51} }}.\)
Vậy \(d\left( {SB;AC} \right) = \frac{{2a\sqrt {51} }}.\)
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |