LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC nội tiếp đường tròn (O), các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng EF cắt đường tròn (O) tại M, N (F nằm giữa M và E). Chứng minh rằng: .

Cho tam giác ABC nội tiếp đường tròn (O), các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng EF cắt đường tròn (O) tại M, N (F nằm giữa M và E). Chứng minh rằng: .

1 trả lời
Hỏi chi tiết
9
0
0
Nguyễn Thị Nhài
11/09 15:02:30

Ta có: \(BE \bot AC \Rightarrow \widehat {BEC} = 90^\circ \) (3)

\(CF \bot AB \Rightarrow \widehat {CFB} = 90^\circ \) (4)

Từ (3) và (4), ta thấy \(\widehat {BEC} = \widehat {CFB} = 90^\circ \)

Vậy tứ giác BFCE nội tiếp.

Khi đó \(\widehat {AFN} = \widehat {ACB}\) (hai góc cùng bù với \(\widehat {BFE}\)) (1)

Mà (tính chất góc nội tiếp trong đường tròn (O)) (2)

 (tính chất góc có đỉnh bên trong đường tròn (O)) (3)

Từ (1), (2), (3) suy ra

Do đó AM⏜=AN⏜.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư