Cho tam giác ABC nội tiếp đường tròn (O), các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng EF cắt đường tròn (O) tại M, N (F nằm giữa M và E). Chứng minh rằng: .
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có: \(BE \bot AC \Rightarrow \widehat {BEC} = 90^\circ \) (3)
\(CF \bot AB \Rightarrow \widehat {CFB} = 90^\circ \) (4)
Từ (3) và (4), ta thấy \(\widehat {BEC} = \widehat {CFB} = 90^\circ \)
Vậy tứ giác BFCE nội tiếp.
Khi đó \(\widehat {AFN} = \widehat {ACB}\) (hai góc cùng bù với \(\widehat {BFE}\)) (1)
Mà (tính chất góc nội tiếp trong đường tròn (O)) (2)
(tính chất góc có đỉnh bên trong đường tròn (O)) (3)
Từ (1), (2), (3) suy ra
Do đó AM⏜=AN⏜.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |