Cho tam giác ABC vuông tại đỉnh A, đường cao AH, từ H kẻ HM vuông góc AC và trên HM lấy điểm E sao cho MH = EM. Kẻ HN vuông góc AB và trên HN lấy điểm D sao cho NH = DN.
a) Chứng minh D, A, E thẳng hàng.
b) Chứng minh MN song song DE.
c) Chứng minh BD song song CE.
d) Chứng minh AD = AE = AH, suy ra tam giác DHE vuông.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Xét tam giác AHE có AM vừa là đường cao vừa là trung tuyến
Do đó tam giác AHE cân tại A
Suy ra AH = AE, AH là tia phân giác của \(\widehat {HA{\rm{E}}}\)
Suy ra \(\widehat {HAM} = \widehat {MAE} = \frac{1}{2}\widehat {HA{\rm{E}}}\)
Xét tam giác AHD có AN vừa là đường cao vừa là trung tuyến
Do đó tam giác AHD cân tại A
Suy ra AH = AD, AN là tia phân giác của \(\widehat {HA{\rm{D}}}\)
Suy ra \(\widehat {HAN} = \widehat {NAD} = \frac{1}{2}\widehat {HAD}\)
Ta có:
\(\widehat {DA{\rm{E}}} = \widehat {DAN} + \widehat {NAH} + \widehat {HAM} + \widehat {MA{\rm{E}}} = 2\widehat {NAH} + 2\widehat {HAM} = 2\widehat {BAC} = 2.90^\circ = 180^\circ \)
Suy ra D, A, E thẳng hàng
b) Xét tam giác EDH có M là trung điểm của EH, N là trung điểm của DH
Suy ra MN là đường trung bình
Do đó MN // DE
c) Xét △AHB và △ADB có
AB là cạnh chung
\(\widehat {HAB} = \widehat {BAD}\)(chứng minh câu a)
AH = AD (chứng minh câu a)
Do đó △AHB = △ADB (c.g.c)
Suy ra \(\widehat {AHB} = \widehat {ADB}\) (hai góc tương ứng)
Mà \(\widehat {AHB} = 90^\circ \) nên \(\widehat {ADB} = 90^\circ \)
Hay AD ⊥ BD (1)
Xét △AHC và △AEC có
AC là cạnh chung
\(\widehat {HAC} = \widehat {EAC}\)(chứng minh câu a)
AH = AE (chứng minh câu a)
Do đó △AHC = △AEC (c.g.c)
Suy ra \(\widehat {AHC} = \widehat {AEC}\) (hai góc tương ứng)
Mà \(\widehat {AHC} = 90^\circ \) nên \(\widehat {AEC} = 90^\circ \)
Hay AE ⊥ EC (2)
Từ (1) và (2) suy ra EC // BD
d) Ta có AD = AH, AE = AH (chứng minh câu a)
Suy ra AD = AE = AH
Xét tứ giác AMHN có
\(\widehat {ANH} = \widehat {AMH} = \widehat {MAN} = 90^\circ \)
Suy ra AMHN là hình chữ nhật
Do đó \(\widehat {MHN} = 90^\circ \)
Hay tam giác DEH vuông tại H
Vậy AD = AE = AH và DHE vuông tại H.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |