Cho phương trình 2x2 + 2(m + 1)x – 3 = 0.
a) Chứng minh phương trình đó luôn có nghiệm với mọi giá trị của m.
b) Gọi x1, x2 là hai nghiệm của phương trình đó. Tìm giá trị nhỏ nhất của biểu thức
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Xét phương trình: 2x2 + 2(m + 1)x – 3 = 0.
a) Phương trình đã cho có ∆’ = (m + 1)2 ‒ 2.(‒3) = (m + 1)2 + 6.
Với mọi m, ta có (m + 1)2 ≥ 0 nên (m + 1)2 + 6 ≥ 6 hay ∆’ > 0.
Vậy phương trình đó luôn có hai nghiệm phân biệt với mọi giá trị của m.
b) Theo định lí Viète, ta có:
\[{x_1} + {x_2} = \frac{{ - 2\left( {m + 1} \right)}}{2} = - m - 1\] và \[{x_1}{x_2} = \frac{{ - 3}}{2}.\]
Ta có: \[A = x_1^2 + x_2^2 + 3{x_1}{x_2}\]
= (x1 + x2)2 + x1x2
Thay x1 + x2 = – m – 1 và \[{x_1}{x_2} = \frac{{ - 3}}{2}\] vào biểu thức trên ta có:
\(A = {\left( { - m - 1} \right)^2} + \frac{{ - 3}}{2} = {\left( {m + 1} \right)^2} - \frac{3}{2}.\)
Với mọi m ta luôn có: (m + 1)2 ≥ 0 nên \({\left( {m + 1} \right)^2} - \frac{3}{2} \ge - \frac{3}{2}.\)
Khi đó, A có giá trị nhỏ nhất bằng \( - \frac{3}{2}\) khi m + 1 = 0 hay m = –1.
Vậy giá trị nhỏ nhất của biểu thức A là \( - \frac{3}{2}\) tại m = –1.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |