Cho tam giác ABC có đường cao AH (H ∈ BC) và nội tiếp đường tròn (O). Vẽ đường kính AD của đường tròn (O). Chứng minh AB.AC = AH.AD.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Do AH là đường cao tam giác ABC nên AH ⊥ BC, suy ra \[\widehat {AHB} = \widehat {AHC} = 90^\circ \]
Ta có \(\widehat {ACD}\) là góc nội tiếp chắn nửa đường tròn (O) đường kính AD nên \(\widehat {ACD} = 90^\circ .\)
Xét ∆AHB và ∆ACD có:
\(\widehat {AHB} = \widehat {ACD} = 90^\circ ;\)
\(\widehat {ABH} = \widehat {ADC}\) (hai góc nội tiếp cùng chắn cung AC của đường tròn (O)).
Do đó ∆AHB ᔕ ∆ACD (g.g).
Suy ra \(\frac = \frac\) hay AB.AC = AH.AD.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |