Cho đường tròn (O), đường kính AB = 2R, dây MN vuông góc với dây AB tại I sao cho IA < IB. Trên đoạn MI lấy điểm E (E ≠ M, I). Tia AE cắt đường tròn tại điểm thứ hai là K.
a. Chứng minh tứ giác IEKB nội tiếp.
b. Chứng minh ∆AME, AKM đồng dạng với nhau và \(A{M^2} = AE.AK\).
c. Chứng minh: \(AE.AK + BI.BA = 4{R^2}\).
d. Xác định vị trí điểm I sao cho chu vi ∆MIO đạt GTLN.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải:
a. Ta có: \(\widehat {AKB} = 90^\circ \)(góc nội tiếp chắn nửa đường tròn đường kinh AB)
Tứ giác IEKB có: \(\widehat {AKB} = 90^\circ = \widehat {EKB};\widehat {EIB} = 90^\circ \)
Có tổng 2 góc đối \(\widehat {EKB} + \widehat {EIB} = 90^\circ + 90^\circ = 180^\circ \)
⇒ Tứ giác IEKB nội tiếp đường tròn đường kính EB
b. Xét ∆AME và ∆AKM: \(\widehat {MAE}\) chung; \(\widehat {AME} = \widehat {AKM}\) (góc nội tiếp cùng chắn 2 cung AM = AN)
⇒ ∆AME ∆AKM(g.g)
\( \Rightarrow \frac = \frac\) (hai cạnh tương ứng tỉ lệ) \( \Rightarrow A{M^2} = AE.AK\)
c. Áp dụng hệ thức lượng vào ∆ANB vuông tại N, đường cao NI ⊥ AB ta có:
\(BI.BA = N{B^2}\)
Và ta có \(AE.AK = A{M^2} = A{N^2}\) (chứng minh câu b và AM = AN, tính chất đường kính và dây cung)
\( \Rightarrow AE.AK + BI.BA = A{N^2} + N{B^2} = A{B^2}\) (áp dụng Pytago vào ∆ANB)
\( = {\left( {2R} \right)^2} = 4{R^2}\).
Vậy \(AE.AK + BI.BA = 4{R^2}\).
d. ∆MIO vuông tại I, áp dụng định lí Pytago ta có: \(O{I^2} + M{I^2} = O{M^2} = {R^2}\)
Ta có: \({\left( {MI - IO} \right)^2} \ge 0 \Leftrightarrow 2M{I^2} + 2I{O^2} \ge M{I^2} + I{O^2} + 2MI.IO = {\left( {MI + IO} \right)^2}\)
\( \Rightarrow MI + IO \le \sqrt {2\left( {M{I^2} + I{O^2}} \right)} = R\sqrt 2 \)
Chu vi tam giác MIO là P = MI + IO + MO ≤ \(R\sqrt 2 + R\).
Chu vi P đạt giá trị lớn nhất bằng \(R\sqrt 2 + R\) khi MI + IO = \(R\sqrt 2 \) hay MI = IO = \(\frac{{R\sqrt 2 }}{2}\).
Vậy điểm I nằm trên AO sao cho IO = \(\frac{{R\sqrt 2 }}{2}\) thì chu vi ∆MIO đạt GTLN.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |