Bài tập  /  Bài đang cần trả lời

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và M là trung điểm của SA. Tìm giao tuyến của mặt phẳng (P) với các mặt của hình chóp S.ABCD, biết rằng (P) đi qua M, song song với SC và AD.

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và M là trung điểm của SA. Tìm giao tuyến của mặt phẳng (P) với các mặt của hình chóp S.ABCD, biết rằng (P) đi qua M, song song với SC và AD.

1 trả lời
Hỏi chi tiết
15
0
0
Nguyễn Thu Hiền
13/09 17:26:00

Gọi O là giao điểm của AC và BD, E là trung điểm của CD.

Xét ∆SAC có: M, O lần lượt là trung điểm của SA, AC nên MO là đường trung bình của ∆SAC, suy ra SC // MO.

Mà MO ⊂ (MOE), suy ra SC // (MOE).

Xét ∆ADC có: O, E lần lượt là trung điểm của AC, CD nên OE là đường trung bình của ∆ADC, suy ra AD // OE.

Mà OE ⊂ (MOE), suy ra AD // (MOE).

Khi đó, mặt phẳng (P) đã cho là (MOE).

Trong mặt phẳng (ABCD), gọi F là giao điểm của OE và AB.

Mà OE ⊂ (MOE), AB ⊂ (ABCD)

Suy ra (MOE) ∩ (ABCD) = EF, (MOE) ∩ (SAB) = FM.

Vì M ∈ (MOE) ∩ (SAD) và OE // AD

Nên (MOE) ∩ (SAD) = d, với d là đường thẳng đi qua M và d // AD // OE.

Trong mặt phẳng (SAD), d cắt SD tại N.

Do đó, (MOE) ∩ (SAD) = MN và (MOE) ∩ (SDC) = NE.

Vậy (MOE) ∩ (ABCD) = EF;

        (MOE) ∩ (SAB) = FM;

        (MOE) ∩ (SAD) = MN;

        (MOE) ∩ (SDC) = NE.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 11 mới nhất
Trắc nghiệm Toán học Lớp 11 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư