Cho tam giác ABC, trung tuyến AM. Gọi G là trọng tâm tam giác. Qua G kẻ đường thẳng d cắt 2 cạnh AB và AC.Gọi AA', BB', CC" là các đường vuông góc kẻ từ A, B, C đến đường thẳng d. Chứng minh: AA' = BB' + CC’.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi E là trung điểm của AG
Þ \[EA = EG = \frac{1}{2}AG\]
Từ E và M kẻ 2 đường thẳng song song với AA’ và cắt đường thẳng d lần lượt tại K và H.
Mà AA’ ^ d Þ EK ^ d và MH ^ d
G là trọng tâm ΔABC, AM là trung tuyến
\[MG = \frac{1}{2}AG\] (tính chất trọng tâm trong tam giác)
Xét ΔEKG và ΔMHG có:
\[\widehat {EKG} = \widehat {MHG} = 90^\circ \]
\[\widehat {EGK} = \widehat {MGH}\] (vì hai góc đối đỉnh)
\[EG = MG = \frac{1}{2}AG\]
Þ ΔEKG = ΔMHG (cạnh huyền – góc nhọn)
Þ EK = MH
Xét ΔAA'G:
E là trung điểm AG;
EK // AA'
Þ K là trung điểm A'G (tính chất đường trung bình trong tam giác)
Hay EK là đường trung bình của ΔAA'G nên \[EK = \frac{1}{2}AA'\]
\[ \Rightarrow MH = EK = \frac{1}{2}AA'\,\,\,(1)\]
Xét hình thang BB'C'C:
M là trung điểm BC
MH // BB' // CC'
Þ MH là đường trung bình hình thang BB'C'C
\[ \Rightarrow MH = \frac{1}{2}(BB' + CC')\,\,\,(2)\]
Từ (1) và (2) ta có: AA' = BB' + CC' (đpcm)
Vậy AA' = BB' + CC'.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |