b) Chứng minh SC ⊥ (AMN) và MN ⊥ (SAC).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
b) Ta có AM ⊥ SC (do AM ⊥ (SBC)) và AN ⊥ SC (do AN ⊥ (SDC)).
Vì vậy SC ⊥ (AMN).
Suy ra SC ⊥ MN (1)
Tam giác SAB vuông tại A có AM là đường cao: SA2 = SM.SB (*)
Tam giác SAD vuông tại A có AN là đường cao: SA2 = SN.SD (**)
Từ (*), (**), suy ra SM.SB = SN.SD.
Do đó SMSB=SNSD .
Áp dụng định lí Thales đảo, ta được MN // BD.
Ta có BD ⊥ SA (SA ⊥ (ABCD)) và BD ⊥ AC (do ABCD là hình vuông).
Suy ra BD ⊥ (SAC).
Mà MN // BD (chứng minh trên).
Vậy MN ⊥ (SAC).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |