Bài tập  /  Bài đang cần trả lời

Cho tứ giác ABCD nội tiếp (O). Gọi E là giao điểm của AB, CD. F là giao điểm của AC và BD. Đường tròn ngoại tiếp tam giác BDE cắt đường tròn ngoại tiếp tam giác FDC tại điểm K khác D. Tiếp tuyến của (O) tại B và C cắt nhau tại M. a) Chứng minh tứ giác BKCM nội tiếp. b) Chứng minh E, M, F thẳng hàng.

Cho tứ giác ABCD nội tiếp (O). Gọi E là giao điểm của AB, CD. F là giao điểm của AC và BD. Đường tròn ngoại tiếp tam giác BDE cắt đường tròn ngoại tiếp tam giác FDC tại điểm K khác D. Tiếp tuyến của (O) tại B và C cắt nhau tại M.

a) Chứng minh tứ giác BKCM nội tiếp.

b) Chứng minh E, M, F thẳng hàng.

1 trả lời
Hỏi chi tiết
23
0
0
Tôi yêu Việt Nam
13/09 23:05:35

Lời giải

a) Vì điểm K nằm trên đường tròn ngoại tiếp ΔBDE nên tứ giác DKBE nội tiếp đường tròn

Suy ra \(\widehat {BEK} = \widehat {B{\rm{D}}K}\) (2 góc nội tiếp cùng chắn cung BK)

Hay \(\widehat {AEK} = \widehat {{\rm{FD}}K}\)

Vì tứ giác DKFC nội tiếp đường tròn nên \(\widehat {FCK} = \widehat {{\rm{FD}}K}\)

Suy ra \(\widehat {AEK} = \widehat {{\rm{FC}}K}\), hay \(\widehat {AEK} = \widehat {{\rm{AC}}K}\)

Do đó tứ giác AKCE nội tiếp đường tròn

Suy ra \(\widehat {K{\rm{AE}}} + \widehat {KCE} = 180^\circ \)

Mà \(\widehat {KC{\rm{D}}} + \widehat {KCE} = 180^\circ \) (hai góc kề bù)

Do đó \(\widehat {K{\rm{AE}}} = \widehat {KC{\rm{D}}}\) hay \(\widehat {K{\rm{AB}}} = \widehat {KC{\rm{D}}}\)

Do tứ giác BKDE nội tiếp đường tròn nên \(\widehat {KD{\rm{E}}} + \widehat {KBE} = 180^\circ \)

Mà \(\widehat {KBA} + \widehat {KBE} = 180^\circ \) (hai góc kề bù)

Do đó \(\widehat {KD{\rm{E}}} = \widehat {KBA}\) hay \(\widehat {{\rm{KBA}}} = \widehat {KDC}\)

Xét ΔDKC và ΔBKA có:

\(\widehat {{\rm{KBA}}} = \widehat {KDC}\) (chứng minh trên)

\(\widehat {K{\rm{AB}}} = \widehat {KC{\rm{D}}}\) (chứng minh trên)

Suy ra (g.g)

Do đó \(\frac{{K{\rm{A}}}} = \frac{{K{\rm{D}}}}\)

Hay \(\frac = \frac\)

Ta có: \(\widehat {BK{\rm{D}}} = \widehat {DKC} + \widehat {BKC}\); \(\widehat {AKC} = \widehat {BKA} + \widehat {BKC}\)

Mà \(\widehat {DKC} = \widehat {BK{\rm{A}}}\), suy ra \(\widehat {DKB} = \widehat {CK{\rm{A}}}\)

Xét ΔKBD và ΔKAC có:

\(\widehat {DKB} = \widehat {CK{\rm{A}}}\) (chứng minh trên)

\(\frac = \frac\) (chứng minh trên)

Suy ra (c.g.c)

Do đó \(\widehat {KB{\rm{D}}} = \widehat {KAC}\)

Hay \(\widehat {KBF} = \widehat {KAF}\)

Suy ra tứ giác AKFB nội tiếp đường tròn

Do đó \(\widehat {BKF} = \widehat {{\rm{BAF}}}\) (2 góc nội tiếp chắn cung BF)

Suy ra \(\widehat {BKF} = \widehat {BAC} = \widehat {B{\rm{D}}C}\) (do \(\widehat {BAC},\widehat {B{\rm{D}}C}\) cùng chắn cung BC)                   (1)

Ta có: \(\widehat {B{\rm{D}}C} = \widehat {F{\rm{D}}C} = \widehat {FKC}\) (cùng chắn cung FC)                       (2)

Xét ΔBMC có \(\widehat {MBC} + \widehat {MCB} + \widehat {BMC} = 180^\circ \) (tổng ba góc trong một tam giác)

Mà \(\widehat {MBC} = \widehat {BAC},\widehat {MCB} = \widehat {B{\rm{D}}C}\)(Góc tạo bởi tiếp tuyến và dây cung)

Suy ra \(\widehat {BAC} + \widehat {BDC} + \widehat {BMC} = 180^\circ \)                                              (3)

Từ (1); (2) và (3) suy ra \(\widehat {BKF} + \widehat {FKC} + \widehat {BMC} = 180^\circ \)

Hay \(\widehat {BKC} + \widehat {BMC} = 180^\circ \)

Do đó tứ giác BKCM nội tiếp đường tròn

b) Ta có \(\widehat {BKF} = \widehat {B{\rm{D}}C}\) (chứng minh câu a)

Suy ra \(\widehat {BKF} = \widehat {B{\rm{DE}}} = \widehat {BKE}\) (Do tứ giác DKBE nội tiếp đường tròn)

Mà 2 điểm F và E nằm cùng phía so với BK

Suy ra 3 điểm K; F; E thẳng hàng

Hay F nằm trên KE                                                   (*)

Vì \(\widehat {BKF} = \widehat {BAC},\widehat {CKF} = \widehat {B{\rm{D}}C},\widehat {BAC} = \widehat {B{\rm{D}}C}\)

Nên \(\widehat {BKF} = \widehat {CKF}\)

Suy ra \(\widehat {BKE} = \widehat {CKE}\) (Do K; F; E thẳng hàng)

Do đó KE là phân giác của \(\widehat {BKC}\)                     (4)

Xét (O) có MB, MC là 2 tiếp tuyến cắt nhau tại M

Nên MB = MC

Do đó tam giác MBC cân tại M

Suy ra \(\widehat {MBC} = \widehat {MCB}\)

Xét tứ giác BKCM nội tiếp đường tròn có \(\widehat {MBC} = \widehat {MKC},\widehat {MCB} = \widehat {MKB}\)

Suy ra \(\widehat {MKC} = \widehat {MKB}\)

Do đó KM là phân giác của \(\widehat {BKC}\)                                         (5)

Từ (4) và (5) suy ra 3 điểm K; M; E thẳng hàng hay M nằm trên KE (**)

Từ (*) và (**) suy ra 3 điểm E; M; F thẳng hàng

Vậy 3 điểm E; M; F thẳng hàng.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư