Bài tập  /  Bài đang cần trả lời

Cho đường thẳng d và hai điểm A, B cùng thuộc một nửa mặt phẳng bờ d. Hai điểm E, F thay đổi trên d sao cho \(\overrightarrow {EF} \) không đổi. Xác định vị trí của hai điểm E, F để AE + BF nhỏ nhất.

Cho đường thẳng d và hai điểm A, B cùng thuộc một nửa mặt phẳng bờ d. Hai điểm E, F thay đổi trên d sao cho \(\overrightarrow {EF} \) không đổi. Xác định vị trí của hai điểm E, F để AE + BF nhỏ nhất.
1 trả lời
Hỏi chi tiết
4
0
0
Đặng Bảo Trâm
13/09 23:42:50

Lời giải:

Ta có: \(\left| {\overrightarrow {EF} } \right| = m\) (m > 0) không đổi.

Đặt \(\overrightarrow u = \overrightarrow {EF} \) \(\left( {\overrightarrow u \ne \overrightarrow 0 } \right)\), \(\overrightarrow u \) không đổi, khi đó \(\left| {\overrightarrow u } \right| = m\) không đổi.

Gọi G là ảnh của điểm B qua phép tịnh tiến theo vectơ \( - \overrightarrow u \). Khi đó \(\overrightarrow {BG} = - \overrightarrow u \). Vì B cố định và \(\overrightarrow u \) không đổi nên G cố định. Gọi G' là ảnh của G qua phép đối xứng trục d thì G' cố định.

Gọi giao điểm của AG' và đường thẳng d là E, trên d lấy điểm F thỏa mãn EF = m và \(\overrightarrow {EF} = \overrightarrow u = - \overrightarrow {BG} \) hay \(\overrightarrow {EF} = \overrightarrow {GB} \). Khi đó BGEF là hình bình hành nên BF = GE.

Mà G và G' đối xứng nhau qua d nên GE = G'E. Do đó BF = GE = G'E.

Ta có: AE + BF = AE + G'E = AG' (1).

Ta có E và F như trên là hai điểm cần tìm để AE + BF nhỏ nhất.

Thật vậy, gọi E' và F' là 2 điểm trên d, khác E và F sao cho \(\overrightarrow {E'F'} = \overrightarrow u \) và \(\left| {\overrightarrow {E'F'} } \right| = \left| {\overrightarrow u } \right| = m\).

Ta có: AE' + BF' = AE' + GE' = AE' + G'E' > AG' (2) (bất đẳng thức trong tam giác AG'E').

Từ (1) và (2) suy ra AE + BF < AE' + BF'. Từ đó suy ra điều phải chứng minh.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 11 mới nhất
Trắc nghiệm Toán học Lớp 11 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư