a) Tìm các hệ số \(x\) và \(y\) trong phản ứng hóa học đã được cân bằng sau:
\(x{\rm{KCl}}{{\rm{O}}_3} \to 2{\rm{KCl}} + y{{\rm{O}}_2}.\)
Từ đó, hãy hoàn thiện phương trình phản ứng hóa học sau khi được cân bằng.
b) Xác định hàm số \(y = ax + b\) để đồ thị hàm số đó đi qua hai điểm \(A\left( {1;\,\, - 1} \right)\) và \(B\left( {4;\,\,5} \right)\).
c) Giải bài toán sau bằng cách lập hệ phương trình:
Một chiếc thuyền xuôi dòng và ngược dòng trên khúc sông dài \(40\) km hết \(4\) giờ \(30\) phút. Biết thời gian thuyền xuôi dòng \(5\) km bằng thời gian thuyền ngược dòng \(4\) km. Tính vận tốc dòng nước.Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Vì số nguyên tử của \({\rm{K,}}\,\,{\rm{Cl}}\) và \({\rm{O}}\) ở cả hai vế của phương trình phản ứng phải bằng nhau nên ta có \(\left\{ \begin{array}{l}x = 2\\x = 2\\3x = 2y\end{array} \right.\) hay \(\left\{ \begin{array}{l}x = 2\\3x = 2y\end{array} \right.\)
Thay \(x = 2\) vào phương trình \(3x = 2y,\) ta được:
\(3 \cdot 2 = 2y\) suy ra \(2y = 6,\) nên \(y = 3.\)
Vậy \(x = 2\) và \(y = 3.\) Khi đó ta hoàn thiện phương trình phản ứng hóa học sau cân bằng như sau:
\(2{\rm{KCl}}{{\rm{O}}_3} \to 2{\rm{KCl}} + 3{{\rm{O}}_2}.\)
b) Vì đồ thị hàm số \(y = ax + b\) đi qua hai điểm \(A\left( {1;\,\, - 1} \right)\) và \(B\left( {4;\,\,5} \right)\) nên thay lần lượt từng cặp giá trị \(x,\,\,y\) vào hàm số, ta có: \(\left\{ \begin{array}{l} - 1 = a \cdot 1 + b\\5 = a \cdot 4 + b\end{array} \right.\) hay \(\left\{ \begin{array}{l}a + b = - 1\\4a + b = 5.\end{array} \right.\)
Trừ từng vế phương trình thứ hai cho phương trình thứ nhất của hệ, ta được:
\(3a = 6,\) suy ra \(a = 2.\)
Thay \(a = 2\) vào phương trình \(a + b = - 1,\) ta được:
\(2 + b = - 1,\) suy ra \(b = - 3.\)
Vậy hàm số cần tìm là \(y = 2x - 3.\)
c) Gọi \(x,\,\,y\) (km/h) lần lượt là vận tốc của thuyền khi nước yên lặng và vận tốc dòng nước \(\left( {x > y > 0} \right).\)
Vận tốc của thuyền khi đi xuôi dòng là: \(x + y\) (km/h).
Vận tốc của thuyền khi đi ngược dòng là: \(x - y\) (km/h).
⦁ Thời gian thuyền đi xuôi dòng \(40\) km là: \(\frac\) (giờ).
Thời gian thuyền đi ngược dòng \(40\) km là: \[\frac\] (giờ).
Theo bài, chiếc thuyền xuôi dòng và ngược dòng trên khúc sông dài \(40\) km hết \(4\) giờ \(30\) phút \(( = 4,5\) giờ) nên ta có phương trình: \(\frac + \frac = 4,5\). (1)
⦁ Thời gian thuyền đi xuôi dòng \(5\) km là: \(\frac{5}\) (giờ).
Thời gian thuyền đi ngược dòng \(4\) km là: \[\frac{4}\] (giờ).
Theo bài, thời gian thuyền xuôi dòng \(5\) km bằng thời gian thuyền ngược dòng \(4\) km nên ta có phương trình: \(\frac{5} = \frac{4}\). (2)
Từ phương trình (1) và phương trình (2), ta có hệ phương trình:
\(\left\{ \begin{array}{l}\frac + \frac = 4,5\\\frac{5} = \frac{4}\end{array} \right.\) hay \(\left\{ \begin{array}{l}\frac + \frac = 4,5\\\frac{5} - \frac{4} = 0\end{array} \right.\)
Cách 1. Nhân hai vế của phương trình thứ hai với 8, ta được \(\left\{ \begin{array}{l}\frac + \frac = 4,5\\\frac - \frac = 0\end{array} \right.\) Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ trên, ta được: \(\frac = 4,5,\) suy ra \(\frac{1} = 0,0625\) nên \(x - y = 16.\) (3) Thay \(\frac{1} = 0,0625\) vào phương trình \(\frac{5} = \frac{4},\) ta được: \(\frac{5} = 4 \cdot 0,0625\) suy ra \(\frac{5} = 0,25\) nên \(x + y = 20\). (4) Từ phương trình (3) và phương trình (4), ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x + y = 20}\\{x - y = 16.}\end{array}} \right.\) Cách 2. Đặt \(a = \frac{1}\) và \(b = \frac{1}\) \(\left( {a > 0;\,\,b > 0} \right)\), ta có hệ phương trình: \(\left\{ \begin{array}{l}40a + 40b = 4,5\\5a = 4b\end{array} \right.\) hay \(\left\{ \begin{array}{l}40a + 40b = 4,5\\5a - 4b = 0\end{array} \right.\) Nhân hai vế của phương trình thứ hai của hệ trên với 10, ta được: \(\left\{ \begin{array}{l}40a + 40b = 4,5\\50a - 40b = 0\end{array} \right.\) Cộng từng vế hai phương trình của hệ trên, ta được: \(90a = 4,5\), suy ra \(a = \frac{1}\) (thỏa mãn). Thay \(a = \frac{1}\) vào phương trình \(5a = 4b\), ta được: \[5 \cdot \frac{1} = 4b,\] suy ra \(b = \frac{1}\) (thỏa mãn). Với \(b = \frac{1}\) ta có: \(\frac{1} = \frac{1}\) suy ra \(x - y = 16\). (3’) Với \(a = \frac{1}\) ta có \(\frac{1} = \frac{1}\) suy ra \(x + y = 20\). (4’) Từ phương trình (3’) và phương trình (4’), ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x + y = 20}\\{x - y = 16.}\end{array}} \right.\) |
Cộng từng vế hai phương trình của hệ trên, ta được:
\(2x = 36,\) suy ra \(x = 18\) (thỏa mãn).
Thay \(x = 18\) vào phương trình \(x + y = 20\), ta được:
\(18 + y = 20\), suy ra \(y = 2\) (thỏa mãn).
Vậy vận tốc dòng nước là 2 km/h.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |