LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

1. Cho tam giác \[ABC\] vuông tại \(A\) có \(AB = 6\,\,{\rm{cm}}\) và \(\cos B = \frac{3}{5}.\) Tính độ dài các cạnh \(BC,\,\,AC\) và số đo góc \(C\) (làm tròn kết quả số đo góc đến phút). 2. Tính chiều cao của một ngọn núi (kết quả làm tròn đến hàng đơn vị), biết tại hai điểm \(A,\,\,B\) cách nhau \[500{\rm{\;m,}}\] người ta nhìn thấy đỉnh núi với góc nâng lần lượt là \(34^\circ \) và \(38^\circ \) (hình vẽ).

1. Cho tam giác \[ABC\] vuông tại \(A\) có \(AB = 6\,\,{\rm{cm}}\) và \(\cos B = \frac{3}{5}.\) Tính độ dài các cạnh \(BC,\,\,AC\) và số đo góc \(C\) (làm tròn kết quả số đo góc đến phút).

2. Tính chiều cao của một ngọn núi (kết quả làm tròn đến hàng đơn vị), biết tại hai điểm \(A,\,\,B\) cách nhau \[500{\rm{\;m,}}\] người ta nhìn thấy đỉnh núi với góc nâng lần lượt là \(34^\circ \) và \(38^\circ \) (hình vẽ).
1 trả lời
Hỏi chi tiết
17
0
0
CenaZero♡
03/10 12:09:00
1. Xét \(\Delta ABC\) vuông tại \(A,\) ta có:

⦁ \(AB = BC \cdot \cos B\) suy ra \[BC = \frac{{\cos B}} = \frac{6}{{\frac{3}{5}}} = 10{\rm{\;(cm)}}{\rm{.}}\]

⦁ \(B{C^2} = A{B^2} + A{C^2}\)

Suy ra \(A{C^2} = B{C^2} - A{B^2} = {10^2} - {6^2} = 64,\) nên \[AC = 8{\rm{\;cm}}{\rm{.}}\]

⦁ \(\widehat {B\,} + \widehat {C\,} = 90^\circ \) suy ra \(\sin C = \cos B = \frac{3}{5}\), từ đó ta tìm được \(\widehat {C\,} \approx 36^\circ 52'\).

2. Đặt: \(BC = x\,\,\left( {\rm{m}} \right);\) \(AC = AB + BC = 500 + x\,\,\left( {\rm{m}} \right)\).

Xét \(\Delta ACD\) vuông tại \(C,\) ta có: \[CD = AC \cdot {\rm{tan}}\widehat {CAD} = \left( {500 + x} \right) \cdot {\rm{tan}}34^\circ .\]

Xét \(\Delta BCD\) vuông tại \(C,\) ta có: \(CD = BC \cdot {\rm{tan}}\widehat {CBD} = x \cdot {\rm{tan}}38^\circ \).

Do đó, ta có: \(\;\left( {500 + x} \right) \cdot {\rm{tan}}34^\circ  = x \cdot {\rm{tan}}38^\circ \)

\(500 \cdot {\rm{tan}}34^\circ  + x \cdot {\rm{tan}}34^\circ  = x \cdot {\rm{tan}}38^\circ \)

\(\;x \cdot {\rm{tan}}38^\circ  - x \cdot {\rm{tan}}34^\circ  = 500 \cdot {\rm{tan}}34^\circ \)

\(\;x \cdot \left( {{\rm{tan}}38^\circ  - {\rm{tan}}34^\circ } \right) = 500 \cdot {\rm{tan}}34^\circ \)

\(\;x = \frac34^\circ }}{{{\rm{tan}}38^\circ  - {\rm{tan}}34^\circ }} \approx 3\,\,158,5\,\,({\rm{m)}}{\rm{.}}\)

Suy ra \(CD = x \cdot {\rm{tan}}38^\circ  \approx 3\,\,158,5 \cdot {\rm{tan}}38^\circ  \approx 2468\,\,({\rm{m}}).\)

Vậy ngọn núi cao khoảng \(2\,\,468\) mét.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư