Lim ( n → +∞ ) ( √(4n² + 3n + 1 - 2n) ) = a/b, tính √(a² + b²) Tham khảo câu trả lời từ Trợ lý ảo Lazi To solve the limit \[ \lim_{n \to +\infty} \sqrt{4n^2 + 3n + 1 - 2n}, \] we first simplify the expression inside the square root: \[ 4n^2 + 3n + 1 - 2n = 4n^2 + (3n - 2n) + 1 = 4n^2 + n + 1. \] Now we have: \[ \lim_{n \to +\infty} \sqrt{4n^2 + n + 1}. \] Next, we can factor out \(n^2\) from the square root: \[ \sqrt{4n^2 + n + 1} = \sqrt{n^2 \left(4 + \frac{n}{n^2} + \frac{1}{n^2}\right)} = n \sqrt{4 + \frac{1}{n} + \frac{1}{n^2}}. \] As \(n\) approaches infinity, \(\frac{1}{n}\) and \(\frac{1}{n^2}\) both approach 0: \[ \lim_{n \to +\infty} n \sqrt{4 + \frac{1}{n} + \frac{1}{n^2}} = n \sqrt{4} = n \cdot 2 = 2n. \] Thus, we have: \[ \lim_{n \to +\infty} \sqrt{4n^2 + 3n + 1 - 2n} = \lim_{n \to +\infty} 2n \text{ (since we only consider the leading term when } n \to \infty). \] As this approaches infinity, we can look back at the limit structure: To find \(a\) and \(b\) in the form \( \frac{a}{b} \): This expression is essentially \(2\), where \(a = 2\) and \(b = 1\). Now, we calculate: \[ \sqrt{a^2 + b^2} = \sqrt{2^2 + 1^2} = \sqrt{4 + 1} = \sqrt{5}. \] Thus, the final answer is \[ \sqrt{a^2 + b^2} = \sqrt{5}. \]