LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Bài 1 trang 23 sách giáo khoa hình học lớp 11

1 trả lời
Hỏi chi tiết
497
0
0
Nguyễn Thị Thảo Vân
12/12/2017 00:54:53
Bài 1. Trong mặt phẳng \(Oxy\) cho các điểm \(A(-3;2), B(-4;5)\) và \(C(-1;3)\)
a) Chứng minh rằng các điểm \(A'(2;3), B'(5;4)\) và \(C'(3;1)\) theo thứ tự là ảnh của \(A, B\) và \(C\) qua phép quay tâm \(O\) góc -\( 90^{\circ}\).
b) Gọi tam giác \({A_{1}}\)\({B_{1}}\)\({C_{1}}\) là ảnh của tam giác \(ABC\) qua phép dời hình có được bằng cách thực hiện liên tiếp phép quay tâm \(O\) góc - \( 90^{\circ}\) và phép đối xứng qua trục \(Ox\). Tìm tọa độ các đỉnh của tam giác \({A_{1}}^{}\)\({B_{1}}^{}\)\({C_{1}}^{}\)
Lời giải:
a) (hình bên) 

Gọi \(r = OA, α\) là góc lượng giác \((Ox, OA)\), \(β\) là góc lượng giác \((Ox, OA')\). Giả sử \(A'= ( x'; y')\). Khi đó ta có:
\(β = α - \)\( 90^{\circ}\), \(x = r cos α, y = r sin α\)
Suy ra
\(x' = r cos β = r cos ( α -\) \( 90^{\circ}\))\( = r sinα = y\)
\(y' = r sin β = r sin ( α -\) \( 90^{\circ}\)) \(= - r cos α= - x\)
Do đó phép quay tâm \(O\) góc - \( 90^{\circ}\) biến \(A(-3;2)\) thành \(A'(2;3)\). Các trường hợp khác làm tương tự
b) ( hình 1.26)

Gọi tam giác \({A_{1}}^{}\)\({B_{1}}^{}\)\({C_{1}}^{}\) là ảnh của tam giác \(A'B'C'\) qua phép đối xứng trục \(Ox\). Khi đó \({A_{1}}^{}\)(2;-3), \({B_{1}}^{}\) (5;-4), \({C_{1}}^{}\)(3;-1) là đáp số cần tìm.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 11 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư