LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Bài 44 trang 130 SGK Toán 9 tập 2

1 trả lời
Hỏi chi tiết
585
0
0
Tôi yêu Việt Nam
12/12/2017 00:23:36
Bài 44. Cho hình vuông \(ABCD\) nội tiếp đường tròn tâm \(O\), bán kính \(R\) và \(GEF\) là tam giác đều nội tiếp đường tròn đó, \(EF\) là dây song song với \(AB\) (h.119). Cho hình đó quay quanh trục \(GO\). Chứng minh rằng:
a) Bình phương thể tích của hình trụ sinh ra bởi hình vuông bằng tích của thể tích hình cầu sinh ra bởi hình tròn và thể tích hình nón do tam giác đều sinh ra.
b) Bình phương diện tích toàn phần của hình trụ bằng tích của diện tích hình cầu và diện tích toàn phần của hình nón.

Hướng dẫn trả lời:
a) Thể tích hình trụ được tạo bởi hình vuông \(ABCD\) là:
\(V = \pi {\left( {{{AB} \over 2}} \right)^2}.BC\) với \(AB \) là đường chéo của hình vuông có cạnh là \(R\) và \(AB = R\sqrt2\) (\(=BC\))
\(\eqalign{
& V = \pi {\left( {{{R\sqrt 2 } \over 2}} \right)^2}.R\sqrt 2 \cr
& = \pi .{{2{{\rm{R}}^2}} \over 4}.R\sqrt 2 = {{\pi {{\rm{R}}^3}\sqrt 2 } \over 2} \cr
& \Rightarrow {V^2} = \left( {{{\pi {R^3}\sqrt 2 } \over 2}2} \right) = {{2{\pi ^2}{R^6}} \over 2}(1) \cr}\)
Thể tích hình cầu có bán kính \(R\) là: \({V_1} = {4 \over 3}\pi {R^3}\) 
Thể tích hình nón có bán kính đường tròn đáy bằng \({{EF} \over 2}\) là:
 \({V_2} = {1 \over 3}\pi {\left( {{{EF} \over 2}} \right)^2}.GH\)
Với \(EF = R\sqrt3\) (cạnh tam giác đều nội tiếp trong đường tròn \((O;R)\))
và \(GH = {{EF\sqrt 3 } \over 2} = {{R\sqrt {3.} \sqrt 3 } \over 2} = {{3R} \over 2}\) 
Thay vào V2, ta có: \({V_2} = {1 \over 3}\pi {\left( {{{R\sqrt 3 } \over 2}} \right)^2}.{{3{\rm{R}}} \over 2} = {3 \over 8}\pi {R^3}\) 
Ta có: \({V_1}{V_2} = {4 \over 3}\pi {R^3}.{3 \over 8}\pi {R^3} = {{{\pi ^2}{R^6}} \over 2}(2)\)
So sánh (1) và (2) ta được : \({V^2} = {V_1}.{V_2}\)
b) Diện tích toàn phần của hình trụ có bán kính \({{AB} \over 2}\) là:
\(\eqalign{
& S = 2\pi \left( {{{AB} \over 2}} \right).BC + 2\pi {\left( {{{AB} \over 2}} \right)^2} \cr
& S = 2\pi .{{R\sqrt 2 } \over 2}R\sqrt 2 + 2\pi {\left( {{{R\sqrt 2 } \over 2}} \right)^2} \cr
& S = 2\pi {R^2} + \pi {R^2} = 3\pi {R^2} \cr
& \Rightarrow {S^2} = {\left( {3\pi {R^2}} \right)^2} = 9{\pi ^2}.{R^4}(1) \cr} \) 
Diện tích mặt cầu có bán kính \(R\) là: \({S_1} = {\rm{ }}4\pi {R^2}\) (2)
Diện tích toàn phần của hình nón là:
\({S_2} = \pi {{EF} \over 2}.FG + \pi {\left( {{{EF} \over 2}} \right)^2}\)
\(= \pi {{R\sqrt 3 } \over 2}.R\sqrt 3  + \pi {\left( {{{R\sqrt 3 } \over 2}} \right)^2} = {{9\pi {R^2}} \over 4}\) 
Ta có: \({S_1}{S_2} = 4\pi {R^2}.{{9\pi {R^2}} \over 4} = 9{\pi ^2}{R^4}(2)\)
So sánh (1) và (2) ta có: \({S^2} = {\rm{ }}{S_1}.{\rm{ }}{S_2}\)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư