Bài tập  /  Bài đang cần trả lời

Câu 1 trang 126 Giải tích 12

1 trả lời
Hỏi chi tiết
424
0
0
Đặng Bảo Trâm
12/12/2017 01:13:44
Bài 1.
a) Phát biểu định nghĩa nguyên hàm của hàm số f(x) trên một khoảng
b) Nêu phương pháp tính nguyên hàm từng phần. Cho ví dụ minh họa.
Trả lời:
a) Kí hiệu \(K\) là khoảng hoặc đoạn hoặc nửa đoạn của tập số thực \(K\)
Hàm số \(F(x)\) gọi là một nguyên hàm của hàm số f(x) trên khoảng \(K\) nếu \(∀x ∈ K\) ta có \(F’(x) = f(x)\)
b) Phương pháp tính nguyên hàm toàn phần sựa trên cơ sở định lí:
Nếu hai hàm số  \(u = u(x)\) và \(v = v(x)\) có đạo hàm liên tục trên K thì :
 \(\int {u(x).v'(x)dx = u(x)v(x) - \int {u'(x)v(x)dx} } \) (3)
Để tính nguyên hàm toàn phần ta cần phân tích \(f(x)\) thành \(g(x).h(x)\),
- Chọn một nhân tử đặt bằng \(u\) còn nhân tử kia đặt là \(v’\)
- Tìm \(u’\) và \(v\),
- Áp dụng công thức trên, ta đưa tích phân ban đầu về một tích phân mới đơn giản hơn.
Ta cần chú ý các cách đặt thường xuyên như sau:
 
   \(\int {P(x){e^x}dx} \) 
 \(\int {P(x)\sin xdx} \)
 \(\int P(x)cosx dx \)  \(\int P(x)lnx dx \)
\(u\)
\(P(x)\)
\(P(x)\)
\(P(x)\)
\(ln(x)\)
\(dv\)
\(e^xdx\)
\(sinxdx\)
\(cosx dx\)
\(P(x) dx\)
 
Ví dụ:
Tìm nguyên hàm của hàm số \(f(x) = (3x^3- 2x) lnx\)
Giải
Đặt \(u = lnx\) 
\(\eqalign{
& \Rightarrow u' = {1 \over x} \cr
& v' = 3{x^3} - 2x \Rightarrow v = {3 \over 4}{x^4} - {x^2} \cr} \)
Suy ra: 
\(\eqalign{
& \int {f(x)dx = ({3 \over 4}} {x^4} - {x^2})\ln x - \int ( {x^3} - x)dx \cr
& = ({3 \over 4}{x^4} - {x^2})\ln x - {3 \over {14}}{x^4} + {1 \over 2}{x^2} + C \cr} \)
 

 

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư