Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bài 77 trang 148 sách bài tập Toán 7 Tập 1: 77. Cho tam giác đều ABC. Lấy các điểm D, E , F theo thứ tựu thuộc các cạnh B. BC và cA sao cho AD = BE = CF. Chứng minh rằng tam giác DEF là tam giác đều?
Lời giải:
Ta có: AB = AD +DB (1)
BC = BE = EC (2)
AC = AF + FC (3)
AB = AC = BC (4)
AD = BE = CF (5)
Từ (1), (2), (3) và (4),(5) suy ra: BD = EC = AF
Xét ΔADF và ΔBED, ta có:
AD = BE (gt)
∠A =∠B =60o (vì tam giác ABC đều)
AE=BD (chứng minh trên)
suy ra: ΔADF= ΔBED (c.g.c)
DF=ED (hai cạnh tương ứng) (6)
Xét ΔADF và ΔCFE, ta có:
AD = CF (gt)
∠A =∠C =60o (vì tam giác ABC đều)
EC=AF (chứng minh trên)
suy ra: ΔADF= ΔCFE (c.g.c)
DF=FE (hai cạnh tuowmg ứng) (7)
Từ (6) và (7) suy ra: DF – ED = FE
Vậy tam giác DFE đều
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |