Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bài 76 trang 147 sách bài tập Toán 7 Tập 1: 76. Cho tam giác ABC cân tại A có cạnh bên bằng 3cm. Gọi D là một điểm thuộc đáy BC. Qua D, kẻ cac đường thẳng song song vói các cạnh bên, chúng cắt AB và AC theo thứ tự tại F và E.
Tính tổng DE + DF
Lời giải:
Ta có: DF // AC(gt)
=>D1 =C ̂(hai góc đồng vị) (1)
Lại có: ΔABC cân tại A
=>B =C (tính chất tam giác cân) (2)
Từ (1) và (2) suy ra: B =D1
Hay ΔBFD caab tại F =>BF = DF
Nối AD. Xét ΔAFD và ΔDEA có:
∠ADF =∠EAD(so le trong vì DF // AC)
AD cạnh chung
∠FDA =∠EDA(so le tronh vì DE // AB)
Suy ra: ΔAFD= ΔDEA(g.c.g)
AF = DF (hai cạnh tương ứng)
Vậy: DE_DF = AF + BF = AB = 3cm
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |