Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Cho hình chóp SABCD có đáy hình thang AD là đáy lớn N, M lần lượt là 2 điểm trên SB, Sd sao cho MN không song song BD

Cho hình chóp SABCD có đáy hình thang AD là đáy lớn

N, M lần lượt là 2 điểm trên SB, Sd sao cho MN không song song BD

a) SA giao (MCD)
b) MN giao (SAC)
c) MN giao (ABCD)
d) SA giao (MNC)

0 trả lời
Hỏi chi tiết
44
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để giải bài toán này, ta sẽ sử dụng các khái niệm về hình học không gian và các đường thẳng trong không gian.

a) Để tìm điểm giao của đường thẳng SA và mặt phẳng (MCD), ta cần tìm điểm giao của đường thẳng SA với mặt phẳng (MCD). Để làm điều này, ta cần tìm phương trình mặt phẳng (MCD) và phương trình đường thẳng SA.

Phương trình mặt phẳng (MCD): Để tìm phương trình mặt phẳng (MCD), ta cần biết 3 điểm trên mặt phẳng đó. Ta đã biết M và D là 2 điểm trên mặt phẳng (MCD). Để tìm điểm thứ 3, ta có thể sử dụng công thức tìm điểm trung điểm của 2 điểm. Vì N là điểm trên đoạn SB, ta có thể tìm điểm trung điểm của N và B để tìm điểm thứ 3 trên mặt phẳng (MCD).

Phương trình đường thẳng SA: Để tìm phương trình đường thẳng SA, ta cần biết 2 điểm trên đường thẳng đó. Ta đã biết S và A là 2 điểm trên đường thẳng SA.

Sau khi có được phương trình mặt phẳng (MCD) và phương trình đường thẳng SA, ta giải hệ phương trình để tìm điểm giao của chúng.

b) Để tìm điểm giao của đường thẳng MN và mặt phẳng (SAC), ta cần tìm phương trình mặt phẳng (SAC) và phương trình đường thẳng MN. Tương tự như trên, ta cần biết 3 điểm trên mặt phẳng (SAC) và 2 điểm trên đường thẳng MN.

c) Để tìm điểm giao của đường thẳng MN và mặt phẳng (ABCD), ta cần tìm phương trình mặt phẳng (ABCD) và phương trình đường thẳng MN. Tương tự như trên, ta cần biết 3 điểm trên mặt phẳng (ABCD) và 2 điểm trên đường thẳng MN.

d) Để tìm điểm giao của đường thẳng SA và mặt phẳng (MNC), ta cần tìm phương trình mặt phẳng (MNC) và phương trình đường thẳng SA. Tương tự như trên, ta cần biết 3 điểm trên mặt phẳng (MNC) và 2 điểm trên đường thẳng SA.

Tóm lại, để giải bài toán này, ta cần tìm phương trình mặt phẳng và phương trình đường thẳng tương ứng, sau đó giải hệ phương trình để tìm điểm giao của chúng.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 11 mới nhất
Trắc nghiệm Toán học Lớp 11 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư