Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Cho : A = 1/201 + 1/202 + ... + 1/300

Cho : A = 1/201 + 1/202 + ... + 1/300
Chứng tỏ 1/2 > A >1/3
0 trả lời
Hỏi chi tiết
114
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để chứng minh 1/2 > A > 1/3, ta cần chứng minh hai bất đẳng thức sau:

1/2 > A: Ta sẽ chứng minh A < 1/2 bằng cách so sánh A với tổng các phân số 1/2 + 1/2 + ... + 1/2 (có cùng số lượng phân số với A).

Ta có: 1/2 + 1/2 + ... + 1/2 = (1/2) * (1/201 + 1/202 + ... + 1/300) = (1/2) * A

Vì A = 1/201 + 1/202 + ... + 1/300, nên A < (1/2) * A

Do đó, A < 1/2.

1/3 > A: Ta sẽ chứng minh A > 1/3 bằng cách so sánh A với tổng các phân số 1/3 + 1/3 + ... + 1/3 (có cùng số lượng phân số với A).

Ta có: 1/3 + 1/3 + ... + 1/3 = (1/3) * (1/201 + 1/202 + ... + 1/300) = (1/3) * A

Vì A = 1/201 + 1/202 + ... + 1/300, nên A > (1/3) * A

Do đó, A > 1/3.

Vậy, ta đã chứng minh được 1/2 > A > 1/3.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 7 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư