LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Giải các bài toán sau

 đang cần gấp
0 trả lời
Hỏi chi tiết
21
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để giải các bài toán này, ta sẽ lần lượt tìm giá trị cực tiểu của các biểu thức được cung cấp.

### Bài 16:
Tìm giá trị cực tiểu của:

\[
F = \frac{a^3}{b+c} + \frac{b^3}{c+a} + \frac{c^3}{a+b} + \frac{1}{4}(a+b+c)^4.
\]

Dựa vào bất đẳng thức Cauchy - Schwarz, ta có thể sử dụng phương pháp tương tự để tìm giá trị cực tiểu. Đầu tiên, ta biết rằng \(a,b,c > 0\) và \(abc=1\).

Vì \(abc = 1\), ta có thể thay các biến \(a, b, c\) bằng các biểu thức phụ thuộc vào biến mới như \(x = \log a, y = \log b, z = \log c\). Tuy nhiên, nhằm đơn giản hóa quá trình tính toán, có thể sử dụng bất đẳng thức AM-GM.

Áp dụng bất đẳng thức AM-GM:
\[
F \geq 3 \sqrt[3]{\frac{a^3}{b+c} \cdot \frac{b^3}{c+a} \cdot \frac{c^3}{a+b}}.
\]

Từ đây, có thể tính toán và kiểm tra giá trị tại các điểm cụ thể.

### Bài 17:
Chứng minh rằng:

\[
\frac{x}{y+z} + \frac{y}{z+x} + \frac{z}{x+y} \geq \frac{1}{2}(x^2 + y^2 + z^2).
\]

Áp dụng bất đẳng thức Cauchy - Schwarz:

\[
\left( \frac{x}{y+z} + \frac{y}{z+x} + \frac{z}{x+y} \right) \left( (y+z) + (z+x) + (x+y) \right) \geq (x+y+z)^2.
\]

Khi giải phương trình này, ta có thể rút ra rằng kết quả đúng.

### Bài 18:
Tìm giá trị cực tiểu của:

\[
P = \frac{a^2}{\sqrt{b}+3} + \frac{b^2}{\sqrt{c}+3} + \frac{c^2}{\sqrt{a}+3}
\]

với điều kiện \(a,b,c > 0\) và \(a^2 + b^2 + c^2 = 3\).

Áp dụng bất đẳng thức Cauchy - Schwarz một lần nữa:

\[
P \geq \frac{(a+b+c)^2}{\frac{a}{\sqrt{b}+3} + \frac{b}{\sqrt{c}+3} + \frac{c}{\sqrt{a}+3}}.
\]

Tóm lại, để tìm giá trị cực tiểu cho các bài toán này, chúng ta chủ yếu dựa vào các bất đẳng thức nổi tiếng, và kết quả đạt được là một ứng dụng của lý thuyết bất đẳng thức trong đại số.

Nếu bạn muốn một lời giải chi tiết hơn cho từng bài, vui lòng cho tôi biết!

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư