Chứng minh rằng với mọi số nguyên a, b, c, d, tích a−ba−ca−db−cb−dc−d chia hết cho 12.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
P=(a−b)(a−c)(a−d)(b−c)(b−d)(c−d).
Xét bốn số a, b, c, d khi chia cho 3, tồn tại hai số có cùng số dư khi chia cho 3, hiệu của chúng chia hết cho 3, nên P chia hết cho 3.
Xét bốn số a, b, c, d khi chia cho 4 :
– Nếu tồn tại hai số cùng số dư khi chia cho 4 thì hiệu của chúng chia hết cho 4, do đó P chia hết cho 4.
– Nếu bốn số ấy có số dư khác nhau khi chia cho 4 (là 0, 1, 2, 3) thì hai số có số dư là 0 và 2 có hiệu chia hết cho 2, hai số có số dư là 1 và 3 có hiệu chia hết cho 2. Do đó P chia hết cho 4.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |