Cho tam giác ABC vuông tại A có góc B bằng 60°. Tia phân giác của góc ABC cắt AC ở E. Kẻ EM vuông góc với BC (M ∈ BC).
Chứng minh MB = MC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Trong tam giác vuông ABC, ta có \(\widehat B = 60^\circ \)nên \(\widehat C = 90^\circ - 60^\circ = 30^\circ \).
Vì BE là tia phân giác của \(\widehat {ABC}\) nên \(\widehat {ABE} = \widehat {CBE} = \frac{{\widehat {ABC}}}{2} = \frac{{60^\circ }}{2} = 30^\circ \).
Vậy tam giác BEC có \(\widehat C = \widehat {CBE} = 30^\circ \) nên tam giác BEC cân tại E.
Tam giác BEC cân tại E và có EM là đường cao nên cũng là trung tuyến , suy ra MB = MC.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |