a) Khảo sát sự biến thiên và vẽ đồ thị (H) của hàm số y = \(\frac\). Tìm tọa độ tâm đối xứng I của đồ thị.
b) Tìm điều kiện của tham số m để đường thẳng d: y = −x + m cắt đồ thị (H) tại hai điểm phân biệt.
c) Chứng minh rằng tiếp tuyến của đồ thị (H) tại mọi điểm M thuộc (H) luôn cắt hai tiệm của (H) tại hai điểm A và B thuộc hai nhánh của đồ thị và đoạn AB ngắn nhất.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Tập xác định: D = ℝ\{1}.
Chiều biến thiên: y' = \(\frac{{ - 1}}{{{{\left( {x - 1} \right)}^2}}}\) < 0, ∀x ≠ 1.
Vậy hàm số nghịch biến trên mỗi khoảng xác định (−∞; 1) và (1; +∞).
Hàm số không có cực trị.
Giới hạn tại vô cực: \(\mathop {\lim }\limits_{x \to - \infty } y = 2\); \(\mathop {\lim }\limits_{x \to + \infty } y = 2\). Vậy đường thẳng y = 2 là tiệm cận ngang của đồ thị hàm số.
Giới hạn vô cực: \(\mathop {\lim }\limits_{x \to {1^ - }} y = - \infty \); \(\mathop {\lim }\limits_{x \to {1^ + }} y = + \infty \). Vậy đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.
Ta có bảng biến thiên:
Đồ thị hàm số nhận giao điểm I(1; 2) của hai đường tiệm cận làm tâm đối xứng.
b) Đường thẳng thẳng d: y = −x + m cắt đồ thị (H): y = \(\frac\) tại hai điểm phân biệt khi và chỉ khi phương trình \(\frac\) = −x + m có hai nghiệm phân biệt khác 1.
Ta có: \(\frac\) = −x + m
⇔ 2x − 1 = (x – 1)(−x + m).
⇔ x2 + (1 – m)x + m – 1 = 0 (x ≠ 1)
⇔ \(\left\{ \begin{array}{l}\Delta = {\left( {1 - m} \right)^2} - 4\left( {m - 1} \right) > 0\\1 + 1 - m + m - 1 \ne 0\end{array} \right.\) ⇔ m2 – 6m + 5 > 0 ⇔ m ∈ (−∞; 1) ∪ (5; +∞).
c)
Lấy điểm M\(\left( {t;\frac} \right)\) bất kì thuộc đồ thị (H) với t ≠ 1. Phương trình tiếp tuyến của đồ thị (H) tại tiếp điểm M là
∆: y = y'(t)(x – t) + y(t) hay y = \(\frac{{ - 1}}{{{{\left( {t - 1} \right)}^2}}}\left( {x - t} \right) + \frac\).
Đường thẳng ∆ cắt tiệm cận đứng tại A\(\left( {1;\frac} \right)\). Ta có: IA = \(\frac{2}{{\left| {t - 1} \right|}}\).
Đường thẳng ∆ cắt tiệm cận ngang tại điểm B(2t – 1; 2). Ta có IB = 2\(\left| {t - 1} \right|\).
Vậy diện tích tam giác IAB là \({S_{\Delta IAB}} = \frac{1}{2}IA.IB = \frac{1}{2}.\frac{2}{{\left| {t - 1} \right|}}.2\left| {t - 1} \right| = 2\) (đvdt).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |