Cho tam giác ABC cân tại A có đường cao AH, kẻ BK vuông góc AC. Chứng minh:
\(\frac{1}{{B{K^2}}} = \frac{1}{{4B{C^2}}} + \frac{1}{{4A{H^2}}}\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Trên tia CA lấy E sao cho A là trung điểm của CE
Vì tam giác ABC cân tại A nên BA = AC
Suy ra \(BA = \frac{1}{2}CE\)
Xét tam giác BCE có BA là trung tuyến và \(BA = \frac{1}{2}CE\)
Suy ra tam giác EBC vuông tại E
Hay BC ⊥ BE
Mà BC ⊥ AH nên AH // BE (quan hệ từ vuông góc đến song song)
Xét tam giác EBC có AH // BE và A là trung điểm của CE
Suy ra \[{\rm{A}}H = \frac{1}{2}BE\]
Xét tam giác BEC vuông tại B có BK là đường cao
Suy ra \(\frac{1}{{B{K^2}}} = \frac{1}{{B{C^2}}} + \frac{1}{{B{E^2}}}\)
Do đó \(\frac{1}{{B{K^2}}} = \frac{1}{{4B{C^2}}} + \frac{1}{{4A{H^2}}}\)
Vậy \(\frac{1}{{B{K^2}}} = \frac{1}{{4B{C^2}}} + \frac{1}{{4A{H^2}}}\).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |