LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Một công ty du lịch ghi lại độ tuổi các du khách đặt một tour du lịch mạo hiểm ở bảng sau: a) Hãy so sánh độ phân tán của độ tuổi du khách nam và du khách nữ theo khoảng biến thiên và khoảng tứ phân vị. b) Biết rằng trong mẫu số liệu trên có một du khách nữ 49 tuổi. Hỏi độ tuổi của du khách nữ đó có là giá trị ngoại lệ khi so với độ tuổi của các du khách nữ không?

Một công ty du lịch ghi lại độ tuổi các du khách đặt một tour du lịch mạo hiểm ở bảng sau:

a) Hãy so sánh độ phân tán của độ tuổi du khách nam và du khách nữ theo khoảng biến thiên và khoảng tứ phân vị.

b) Biết rằng trong mẫu số liệu trên có một du khách nữ 49 tuổi. Hỏi độ tuổi của du khách nữ đó có là giá trị ngoại lệ khi so với độ tuổi của các du khách nữ không?

1 trả lời
Hỏi chi tiết
18
0
0
Tôi yêu Việt Nam
19/09 14:48:39

a) Khoảng biến thiên của độ tuổi du khách nam là R1 = 55 – 25 = 30 (tuổi).

    Khoảng biến thiên của độ tuổi du khách nữ là R2 = 50 – 25 = 25 (tuổi).

Nếu so sánh theo khoảng biến thiên thì độ tuổi của du khách nam phân tán hơn độ tuổi của du khách nữ.

Đối với mẫu số liệu độ tuổi du khách nam, ta có:

Cỡ mẫu là: n = 25 + 38 + 20 + 12 + 7 + 2 = 104.

Ta có: \(\frac{n}{4} = \frac{4} = 26\).

Tứ phân vị thứ nhất của mẫu số liệu gốc là x26 ∈ [30; 35).

Do đó, Q1 = 30 + \(\frac\left( {35 - 30} \right)\) = \(\frac\).

Ta có: \(\frac{4} = \frac{4} = 78\).

Tứ phân vị thứ ba của mẫu số liệu gốc là x78 ∈ [35; 40).

Do đó, Q3 = 35 + \(\frac\left( {40 - 35} \right)\) = \(\frac{4}\).

Khoảng tứ phân vị của mẫu số liệu là: ∆Q1 = Q3 – Q1 = \(\frac{4}\) − \(\frac\) = \(\frac\) ≈ 8,62.

Đối với mẫu số liệu độ tuổi du khách nữ, ta có:

Cỡ mẫu: n = 24 + 20 + 15 + 0 + 1 + 0 = 60.

Ta có: \(\frac{n}{4} = \frac{4} = 15\).

Tứ phân vị thứ nhất của mẫu số liệu gốc là x15 ∈ [25; 30).

Do đó, Q1 = 25 + \(\frac\left( {30 - 25} \right)\) = \(\frac{8}\).

Ta có: \(\frac{4} = \frac{4} = 45\).

Tứ phân vị thứ ba của mẫu số liệu gốc là x45 ∈ [35; 40).

Do đó, Q3 = 35 + \(\frac\left( {40 - 35} \right)\) = \(\frac{3}\).

Khoảng tứ phân vị của mẫu số liệu là: ∆Q2 = Q3 – Q1 = \(\frac{3}\) − \(\frac{8}\) = \(\frac\) ≈ 7,21.

Nếu so sánh theo khoảng tứ phân vị thì độ tuổi du khách nam phân tán hơn độ tuổi du khách nữ.

b) Với số liệu ghép nhóm của du khách nữ, ta có

Q3 + 1,5∆Q2 = \(\frac{3}\) + 1,5.7,21 ≈ 46,15 < 49.

Do đó độ tuổi của nữ du khách đó là giá trị ngoại lệ khi so với độ tuổi của các du khách nữ.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư