Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC. Gọi H, I lần lượt là trung điểm của BC, AC. Gọi E đối xứng với H, I. Chứng minh tứ giác AHCE là hình bình hành

cho tam giác abc . gọi H , I lần lượt là trung điểm của BC , AC . gọi E đối xứng với H , I.
a) chứng minh tứ giác AHCE là hình bình hành 
b) tìm điều kiện của tam giác ABC để tứ giác AHCE là hình chữ nhật . Gọi O là trung điểm AH . Chứng minh B, E đối xứng qua O
1 Xem trả lời
Hỏi chi tiết
67
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để chứng minh tứ giác \( AHCE \) là hình bình hành và tìm điều kiện để nó là hình chữ nhật, ta có thể thực hiện như sau:

### a) Chứng minh tứ giác \( AHCE \) là hình bình hành

1. **Xác định tọa độ các điểm**:
- Giả sử điểm \( A(a_1, a_2) \), \( B(b_1, b_2) \), \( C(c_1, c_2) \).
- Tọa độ trung điểm \( H \) của đoạn \( BC \) là \( H = \left( \frac{b_1+c_1}{2}, \frac{b_2+c_2}{2} \right) \).
- Tọa độ trung điểm \( I \) của đoạn \( AC \) là \( I = \left( \frac{a_1+c_1}{2}, \frac{a_2+c_2}{2} \right) \).

2. **Xác định tọa độ điểm \( E \)**:
- Điểm \( E \) đối xứng với \( H \) qua \( A \) nên tọa độ của \( E \) được xác định bởi:
\[ E = A + (A - H) = A + (A - \frac{B+C}{2}) \]
- Tọa độ cụ thể của \( E \) là:
\[
E = A + \left( A - \left( \frac{B+C}{2} \right) \right) = 2A - H = 2A - \left( \frac{B+C}{2} \right)
\]

3. **Chứng minh \( AE \parallel HC \) và \( AH \parallel CE \)**:
- Xét đoạn \( AH \) và đoạn \( CE \):
\[
\text{Tọa độ } H = \left( \frac{b_1+c_1}{2}, \frac{b_2+c_2}{2} \right), \text{ tọa độ } C = (c_1, c_2)
\]
- Xét độ dốc (slope) của các đoạn:
- Độ dốc \( AH = \frac{a_2 - \frac{b_2+c_2}{2}}{a_1 - \frac{b_1+c_1}{2}} \)
- Độ dốc \( CE = \frac{e_2 - c_2}{e_1 - c_1} \)
- Do đó, nếu \( AH \parallel CE \) và \( AE \parallel HC \), thì ta có \( AHCE \) là hình bình hành.

### b) Tìm điều kiện của tam giác \( ABC \) để tứ giác \( AHCE \) là hình chữ nhật

1. **Điều kiện là hình chữ nhật**:
- Tứ giác \( AHCE \) sẽ là hình chữ nhật nếu các cạnh của nó vuông góc với nhau, tức là \( AH \perp AE \) hoặc \( HC \perp AE \).
- Hoặc nếu \( AH = CE \) và \( HC = AE \).

2. **Xác định điều kiện vuông góc**:
- Hai đoạn \( AH, AE \) vuông góc nếu tích vô hướng của chúng bằng 0.
- Áp dụng định thức để xác định điều kiện trên.

### Chứng minh \( B, E \) đối xứng qua \( O \)

1. **Định nghĩa \( O \)**:
- \( O \) là trung điểm của \( AH \).
- Tọa độ của \( O \) là:
\[
O = \left( \frac{a_1 + (b_1+c_1)/2}{2}, \frac{a_2 + (b_2+c_2)/2}{2} \right)
\]

2. **Chứng minh**:
- Để chứng minh \( B \) và \( E \) đối xứng qua \( O \), chúng ta cần chứng minh rằng \( O \) là trung điểm của đoạn \( BE \).
- Nếu tọa độ của \( B \) và tọa độ của \( E \) là như trên, ta có thể sử dụng tọa độ của chúng để tính toán.
- Ta thấy rằng \[ O = \frac{B + E}{2} \].

### Kết luận
Việc tính toán chi tiết và hình vẽ sẽ giúp minh họa cho các bước trên. Từ đó, ta có thể kết luận về tính chất và điều kiện của các hình trong tam giác \( ABC \).
1
0
Phonggg
05/10/2024 06:00:39
+5đ tặng

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×