Bài tập  /  Bài đang cần trả lời

Cho hàm số \(y = \frac\) \[\left( C \right)\]. a) Tiệm cận đứng của hàm số là \(x = \frac{3}{2}\). b) Tọa độ giao điểm hai đường tiệm cận thuộc đường thẳng \(x - y - 1 = 0\) c) Đường thẳng \(2x + y - 1 = 0\) cắt tiệm cận đứng, tiệm cận ngang của hàm số tại các điểm A và B. Diện tích của tam giác \(IAB\) bằng \(\frac{4}\), với \(I\)là giao điểm hai đường tiệm cận. d) Gọi \(I\) là giao điểm của hai tiệm cận của đồ thị hàm số. Khoảng cách từ \(I\) đến một tiếp tuyến bất kỳ ...

Cho hàm số \(y = \frac\) \[\left( C \right)\].

a) Tiệm cận đứng của hàm số là \(x = \frac{3}{2}\).

b) Tọa độ giao điểm hai đường tiệm cận thuộc đường thẳng \(x - y - 1 = 0\)

c) Đường thẳng \(2x + y - 1 = 0\) cắt tiệm cận đứng, tiệm cận ngang của hàm số tại các điểm A và B. Diện tích của tam giác \(IAB\) bằng \(\frac{4}\), với \(I\)là giao điểm hai đường tiệm cận.

d) Gọi \(I\) là giao điểm của hai tiệm cận của đồ thị hàm số. Khoảng cách từ \(I\) đến một tiếp tuyến bất kỳ của đồ thị hàm số đã cho đạt giá trị lớn nhất bằng \(\frac{1}{{\sqrt 2 }}\).

1 trả lời
Hỏi chi tiết
6
0
0
Nguyễn Thị Nhài
13/12 11:27:45

a) Đ, b) Đ, c) S, d) Đ

a) Vì \(\mathop {\lim }\limits_{x \to {{\left( {\frac{3}{2}} \right)}^ + }} \frac = + \infty \) nên tiệm cận đứng của hàm số là \(x = \frac{3}{2}\).

b) Hàm số có 1 tiệm cận đứng là \(x = \frac{3}{2}\) và 1 tiệm cận ngang là \(y = \frac{1}{2}\), nên tọa độ giao điểm hai đường tiệm cận là \(I\left( {\frac{3}{2};\frac{1}{2}} \right)\). Rõ ràng I thuộc đường thẳng \(x - y - 1 = 0\).

c) Tọa độ điểm A: \(x = \frac{3}{2} \Rightarrow y = - 2\) suy ra \(A\left( {\frac{3}{2}; - 2} \right)\).

Tọa độ điểm B: \(y = \frac{1}{2} \Rightarrow x = \frac{1}{4}\) suy ra \(B\left( {\frac{1}{4};\frac{1}{2}} \right)\).

\[\overrightarrow {IA} \left( {0; - \frac{5}{2}} \right) \Rightarrow IA = \frac{5}{2}\]; \[\overrightarrow {IB} \left( {\frac{{ - 5}}{4};0} \right) \Rightarrow IB = \frac{5}{4}\]; \[{S_{\Delta IAB}} = \frac{1}{2}IA.IB = \frac{1}{2}.\frac{5}{4}.\frac{5}{2} = \frac\].

d) Tọa độ giao điểm \(I\left( {\frac{3}{2};\frac{1}{2}} \right)\).

Gọi tọa độ tiếp điểm là \(\left( {{x_0};\frac{{{x_0} - 1}}{{2{x_0} - 3}}} \right)\).

Khi đó phương trình tiếp tuyến \(\Delta \) với đồ thị hàm số tại điểm \(\left( {{x_0};\frac{{{x_0} - 1}}{{2{x_0} - 3}}} \right)\) là:

\(y = - \frac{1}{{{{\left( {2{x_0} - 3} \right)}^2}}}\left( {x - {x_0}} \right) + \frac{{{x_0} - 1}}{{2{x_0} - 3}} \Leftrightarrow x + {\left( {2{x_0} - 3} \right)^2}y - 2x_0^2 + 4{x_0} - 3 = 0\).

Khi đó: \(d\left( {I,\Delta } \right) = \frac{{\left| {\frac{3}{2} + \frac{1}{2}{{\left( {2{x_0} - 3} \right)}^2} - 2x_0^2 + 4{x_0} - 3} \right|}}{{\sqrt {1 + {{\left( {2{x_0} - 3} \right)}^4}} }} = \frac{{\left| { - 2{x_0} + 3} \right|}}{{\sqrt {1 + {{\left( {2{x_0} - 3} \right)}^4}} }} \le \frac{{\left| {2{x_0} - 3} \right|}}{{\sqrt {2{{\left( {2{x_0} - 3} \right)}^2}} }} = \frac{1}{{\sqrt 2 }}\)

(Theo bất đẳng thức Cô si)

Dấu  xảy ra khi và chỉ khi \({\left( {2{x_0} - 3} \right)^2} = 1 \Leftrightarrow \left[ \begin{array}{l}2{x_0} - 3 = 1\\2{x_0} - 3 = - 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x_0} = 2\\{x_0} = 1\end{array} \right.\).

Vậy \(\max d\left( {I,\Delta } \right) = \frac{1}{{\sqrt 2 }}\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k