LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Chứng minh rằng phương trình có ít nhất hai nghiệm

Chứng minh rằng phương trình:a. 2x3 – 6x + 1 = 0 có ít nhất hai nghiệm.b. cos x = x có nghiệm

6 trả lời
Hỏi chi tiết
593
1
6
con cá
01/05/2020 17:26:55

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
4
0
01/05/2020 17:27:46
4
0
01/05/2020 17:28:05
Tick điểm cho mk nha bn
1
6
Peo《Off》
01/05/2020 17:39:10

Đặt f(x) = 2x3 – 6x + 1

TXĐ: D = R

f(x) là hàm đa thức nên liên tục trên R.

Ta có: f(-2) = 2.(-2)3 – 6(-2) + 1 = - 3 < 0

            f(0) = 1 > 0

            f(1) = 2.13 – 6.1 + 1 = -3 < 0.

⇒ f(-2).f(0) < 0 và f(0).f(1) < 0

⇒ f(x) = 0 có ít nhất một nghiệm thuộc khoảng (-2; 0) và ít nhất một nghiệm thuộc (0 ; 1)

⇒ phương trình f(x) = 0 có ít nhất hai nghiệm.

1
6
con cá
01/05/2020 17:44:40

b. Xét hàm số g(x) = x – cos x liên tục trên R.

do đó liên tục trên đoạn [-π; π] ta có:

g(-π) = -π – cos (-π) = -π + 1 < 0

g(π) = π – cos π = π – (-1) = π + 1 > 0

⇒ g(-π). g(π) < 0

⇒ phương trình x – cos x = 0 có nghiệm trong (-π; π) tức là cos x = x có nghiệm.

0
0
Simple love
29/05/2020 21:22:10

Đặt f(x) = 2x3 – 6x + 1

TXĐ: D = R

f(x) là hàm đa thức nên liên tục trên R.

Ta có: f(-2) = 2.(-2)3 – 6(-2) + 1 = - 3 < 0

            f(0) = 1 > 0

            f(1) = 2.13 – 6.1 + 1 = -3 < 0.

⇒ f(-2).f(0) < 0 và f(0).f(1) < 0

⇒ f(x) = 0 có ít nhất một nghiệm thuộc khoảng (-2; 0) và ít nhất một nghiệm thuộc (0 ; 1)

⇒ phương trình f(x) = 0 có ít nhất hai nghiệm.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư