Bài tập  /  Bài đang cần trả lời

Nêu cách giải phương trình lượng giác?

3 trả lời
Hỏi chi tiết
563
1
1
Long
17/07/2020 19:56:16
+5đ tặng
- Phương trình sinx = a        (1)

    ♦ |a| > 1: phương trình (1) vô nghiệm.

    ♦ |a| ≤ 1: gọi α là một cung thỏa mãn sinα = a.

Khi đó phương trình (1) có các nghiệm là

                x = α + k2π, k ∈ Z

                và x = π-α + k2π, k ∈ Z.

Nếu α thỏa mãn điều kiện Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án và sinα = a thì ta viết α = arcsin a.

Khi đó các nghiệm của phương trình (1) là

                x = arcsina + k2π, k ∈ Z

                và x = π - arcsina + k2π, k ∈ Z.

Các trường hợp đặc biệt:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án
- Phương trình cosx = a        (2)

    ♦ |a| > 1: phương trình (2) vô nghiệm.

    ♦ |a| ≤ 1: gọi α là một cung thỏa mãn cosα = a.

Khi đó phương trình (2) có các nghiệm là

                x = α + k2π, k ∈ Z

                và x = -α + k2π, k ∈ Z.

Nếu α thỏa mãn điều kiện Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án và cosα = a thì ta viết α = arccos a.

Khi đó các nghiệm của phương trình (2) là

                x = arccosa + k2π, k ∈ Z

                và x = -arccosa + k2π, k ∈ Z.

Các trường hợp đặc biệt:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án
- Phương trình tanx = a        (3)

Điều kiện: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Nếu α thỏa mãn điều kiện Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án và tanα = a thì ta viết α = arctan a.

Khi đó các nghiệm của phương trình (3) là

                x = arctana + kπ,k ∈ Z

- Phương trình cotx = a        (4)

Điều kiện: x ≠ kπ, k ∈ Z.

Nếu α thỏa mãn điều kiện Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án và cotα = a thì ta viết α = arccot a.

Khi đó các nghiệm của phương trình (4) là

                x = arccota + kπ, k ∈ Z

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
1
1
Likeme
17/07/2020 19:56:39
+3đ tặng
  • Đưa về dạng phương trình lượng giác cơ bản.
  • Sử dụng phương pháp khảo sát.
1
0
Hải D
17/07/2020 22:33:50
+3đ tặng

Phương trình đẳng cấp là phương trình chứa sin, cos thỏa mãn bậc của tất cả các hạng tử đều là số chẵn, hoặc đều là số lẻ. Chẳng hạn:

∙∙  sinx, cosx bậc một.

∙∙ sin2x,cos2x,sinxcosx bậc hai.

∙∙ sin3x,cos3x,sin2xcosx,sinxcos2x,cos3x,sin3x đều bậc 3.

Cách giải: Ta xét hai trường hợp sau:

∙∙  Trường hợp 1: cosx=0

∙∙  Trường hợp 2: cosx≠0. Khi đó ta sẽ chia cả 2 vế cho cosmx (ở đó m là bậc của phương trình đẳng cấp), ta được phương trình bậc m với ẩn là tanx

(Tương tự đối vơi việc chia cho sinxsinx để đưa về cotx.)


 

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 10 mới nhất
Trắc nghiệm Toán học Lớp 10 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500K