Bài tập  /  Bài đang cần trả lời

Bài 41 trang 129 SGK Toán 9 tập 2

1 trả lời
Hỏi chi tiết
1.059
0
0
Tôi yêu Việt Nam
12/12/2017 02:04:53
Bài 41. Cho ba điểm \(A, O, B\) thẳng hàng theo thứ tự đó, \(OA = a, OB = b\) (\(a,b\) cùng đơn vị: cm).
Qua \(A\) và \(B\) vẽ theo thứ tự các tia \(Ax\) và \(By\) cùng vuông góc với \(AB\) và cùng phía với \(AB\). Qua \(O\) vẽ hai tia vuông góc với nhau và cắt \(Ax\) ở \(C\), \(By\) ở \(D\) (xem hình 116).
a) Chứng minh \(AOC\) và \(BDO\) là hai tam giác đồng dạng; từ đó suy ra tích \(AC.BD\) không đổi.
b) Tính diện tích hình thang \(ABCD\) khi \(\widehat {COA} = {60^0}\) 
c) Với \(\widehat {COA} = {60^0}\) cho hình vẽ quay xung quanh \(AB\). Hãy tính tỉ số tích các hình do các tam giác \(AOC\) và \(BOD\) tạo thành

Hướng dẫn trả lời:
a) Xét hai tam giác vuông \(AOC\) và \(BDO\) ta có: \(\widehat A = \widehat B = {90^0}\) 
 \(\widehat {AOC} = \widehat {B{\rm{D}}O}\) (hai góc có cạnh tương ứng vuông góc).
Vậy \(∆AOC\) đồng dạng \(∆BDO\)
\( \Rightarrow {{AC} \over {AO}} = {{BO} \over {B{\rm{D}}}}hay{{AC} \over a} = {b \over {B{\rm{D}}}}\) (1)
Vậy \(AC . BD = a . b =\) không đổi.
b) Khi  thì tam giác \(AOC\) trở thành nửa tam giác đều cạnh là \(OC\), chiều cao \(AC\).
\(\Rightarrow OC = 2{\rm{A}}O = 2{\rm{a}} \Leftrightarrow AC = {{OC\sqrt 3 } \over 2} = a\sqrt 3\)
Thay \(AC = a\sqrt{3}\) vào (1), ta có:
\({{AC} \over a} = {b \over {B{\rm{D}}}} \Rightarrow a\sqrt 3 .B{\rm{D}} = a.b \Rightarrow B{\rm{D}} = {{ab} \over {a\sqrt 3 }} = {{b\sqrt 3 } \over 3}\) 
Ta có công thức tính diện tích hình thang \(ABCD\) là:
\(\eqalign{
& S = } \over 2}.AB = {{a\sqrt 3 + {{b\sqrt 3 } \over 3}} \over 2}.\left( {a + b} \right) \cr
& = {{\sqrt 3 } \over 6}\left( {3{{\rm{a}}^2} + 4{\rm{a}}b + {b^2}} \right)\left( {c{m^2}} \right) \cr} \)
c) Theo đề bài ta có:
\(∆AOC\) tạo nên hình nón có bán kính đáy là \(AC = a\sqrt{3}\) và chiều cao là \(AO = a\).
\(∆BOD\) tạo nên hình nón có bán kính đáy là \(B{\rm{D}} = {{b\sqrt 3 } \over 3}\) và chiều cao \(OB = b\)
Ta có: \({ \over } = {^2}.OB}} = {{A{C^2}.AO} \over {B{{\rm{D}}^2}.OB}} = {{{{\left( {a\sqrt 3 } \right)}^2}.a} \over {{{\left( {{{b\sqrt 3 } \over 3}} \right)}^2}.b}} = {{3{{\rm{a}}^3}} \over {{{{b^3}} \over 3}}} = {{9{{\rm{a}}^3}} \over {{b^3}}}\) 
Vậy  \({ \over } = {{9{{\rm{a}}^3}} \over {{b^3}}}\)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 9 mới nhất
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư