Bài 6. Tìm các số đo \(x\) ở các hình sau:
Giải:Hình 55)
Theo định lí tổng hai góc nhọn của tam giác vuông phụ nhau ta áp dụng vào \(\Delta AHI\,\text{ có }\,\widehat H = {90^0}\) ta được:
\(\widehat{A}+\widehat{AIH}= 90^0\), (1)
Áp dụng vào \(\Delta BKI\,\text{ có }\,\widehat K = {90^0}\) ta được:
\(\widehat{B}\) + \(\widehat{BIK} = 90^0\) (2)
mà \(\widehat{AIH}\)= \(\widehat{BIK}\) (vì hai góc đối đỉnh) (3)Từ (1), (2) và (3) suy ra \(\widehat{A}\) = \(\widehat{B}\)Vậy \(\widehat{B}=x= 40^0\)
Hình 56)
Theo định lí tổng hai góc nhọn của tam giác vuông phụ nhau ta áp dụng vào \(\Delta ABD\,\text{ có }\,\widehat {ADB} = {90^0}\) ta được:
\(\widehat{ABD}\) +\(\widehat{A}= 90^0\), (1)
Áp dụng vào \(\Delta ACE\,\text{ có }\,\widehat {AEC} = {90^0}\) ta được:
\(\widehat{ACE}\)+ \(\widehat{A}=90^0\), (2)
Từ (1) và (2) suy ra \(\widehat{ACE}\) = \(\widehat{ABD}=25^0\)
Vậy \(x=25^0\)
Hình 57)
Ta có: \(\widehat{NMP}=\widehat{NMI}\) + \(\widehat{PMI}= 90^0\), (1)
Theo định lí tổng hai góc nhọn của tam giác vuông phụ nhau ta áp dụng vào \(\Delta MNI\,\text{ có }\,\widehat {MIN} = {90^0}\) ta có :
\(\widehat{N }\) + \(\widehat{NMI}= 90^0\), (2)
Từ (1) và (2) suy ra \(\widehat{N }\) = \(\widehat{PMI}=60^0\)
Vậy \(x=60^0\)
Hình 58)
Theo định lí tổng hai góc nhọn của tam giác vuông phụ nhau ta áp dụng vào \(\Delta AHE\,\text{ có }\,\widehat {AHE} = {90^0}\) ta có :
\(\widehat{E }\) + \(\widehat{A}=90^0\)
\(\widehat{E }= 90^0- \widehat{A} = 90^0- 55^0= 35^0\)
\(\widehat{KBH }=\widehat{BKE}+ \widehat{E }\) (Góc ngoài tam giác \(BKE\))
\(= 90^0+ 35^0= 125^0\)
Vậy \(x=125^0\)