LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho đường tròn (O), đường kính AB, điểm H thuộc đoạn OA

Cho đường tròn (O;R), đường kính AB. Điểm H thuộc đoạn OA. Kẻ dây CD vuông góc với AB tại H. Vẽ đường tròn (O1) đường kính AH và đường tròn (O2) đường kính BH. Nối AC cắt đường tròn (O1) tại M, nối BC cắt đường tròn (O2) tại N. Đường thẳng MN cắt đường tròn (O;R) tại E và F
a. Chứng minh CMHN là hình chữ nhật
b. Cho AH = 4cm, HB = 9cm, tính MN
c. Chứng minh CE = CF = CH

2 trả lời
Hỏi chi tiết
3.414
1
2
thảo
25/04/2021 22:40:03

Gọi I là tâm hình chữ nhật CMHNCMHN

⇒ΔIHO1=ΔIMO1(c.c.c)⇒ΔIHO1=ΔIMO1(c.c.c) (vì IH=IM;O1H=O1M;IO1IH=IM;O1H=O1M;IO1 chung) ⇒∠IMO1=∠IHO1=90o⇒∠IMO1=∠IHO1=90o hay O1M⊥EF(1)O1M⊥EF(1)

ΔΔ cân AO1M ΔAO1M Δ cân AOCAOC (vì có chung góc A ở đáy) ⇒O1M//OC(2)⇒O1M//OC(2)

Từ (1);(2)⇒OC⊥EF⇒C(1);(2)⇒OC⊥EF⇒C là điểm chính giữa cung nhỏ EF⇒EF⇒ cung CE=CE= cung CF⇒CE=CF(3)CF⇒CE=CF(3)

và ∠CEN=∠CEF=∠CAE⇒ΔCEN ΔCAE(g.g)∠CEN=∠CEF=∠CAE⇒ΔCEN ΔCAE(g.g) (vì chung góc CC)

⇒CECM=CACE⇒CE2=CM.CA=CH2⇒CECM=CACE⇒CE2=CM.CA=CH2 (vì ΔCHAΔCHA vuông tạiHH đường cao HM)HM)⇒CE=CH(4)⇒CE=CH(4)

Từ (3);(4)⇒đpcm

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
1
4
Vũ Ngọc Lâm
25/04/2021 22:46:01
+4đ tặng

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 9 mới nhất
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư