LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Bài 7 trang 134 SGK Toán 9 tập 2

1 trả lời
Hỏi chi tiết
904
0
0
Tôi yêu Việt Nam
12/12/2017 02:08:24
Bài 7. Cho tam giác đều \(ABC\), \(O\) là trung điểm của \(BC\). Trên các cạnh \(AB, AC\) lần lượt lấy các điểm di động \(D\) và \(E\) sao cho góc \(\widehat {DOE} = {60^0}\).
a) Chứng minh tích \(BD.CE\) không đổi.
b) Chứng minh \(ΔBOD\) đồng dạng \(ΔOED\). Từ đó suy ra tia \(DO\) là tia phân giác của góc \(BDE\).
c) Vẽ đường tròn tâm \(O\) tiếp xúc với \(AB\). Chứng minh rằng đường tròn này luôn tiếp xúc với \(DE\).
Hướng dẫn làm bài:

a) Chứng minh tích \(BD.CE\) không đổi.
Xét hai tam giác: \(∆BOD\) và \(∆CEO\), ta có: \(\widehat B = \widehat C = {60^0}\) (gt) (1)
Ta có \(\widehat {DOC}\) là góc ngoài của \(∆ BDO\) nên: \(\widehat {DOC} = \widehat B + {\widehat D_1}\)
hay \(\widehat + \widehat = \widehat B + \widehat \Leftrightarrow {60^0} + \widehat = {60^0} + \widehat \)
\(\Leftrightarrow \widehat = \widehat (2)\) 
Từ (1) và (2) \(⇒ ∆BOD\) đồng dạng \(∆CEO\) (g.g)
\( \Rightarrow {{B{\rm{D}}} \over {BO}} = {{CO} \over {CE}} \Rightarrow B{\rm{D}}.CE = BO.CO\)
hay \(B{\rm{D}}.CE = {{BC} \over 2}.{{BC} \over 2} = {{B{C^2}} \over 4}\) (không đổi)
Vậy \(B{\rm{D}}.CE = {{B{C^2}} \over 4}\) không đổi
b) Chứng minh \(ΔBOD\) đồng dạng \(ΔOED\)
Từ câu (a) ta có: \(∆BOD\) đồng dạng \(∆CEO\)
\( \Rightarrow {{O{\rm{D}}} \over {OE}} = {{B{\rm{D}}} \over {OC}} = {{B{\rm{D}}} \over {OB}}\) (do \(OC = OB\))
Mà \(\widehat B = \widehat {DOE} = {60^0}\) 
Vậy \(ΔBOD\) đồng dạng \(ΔOED\) (c.g.c) \(\Rightarrow \widehat {B{\rm{D}}O} = \widehat {O{\rm{D}}E}\)  
hay \(DO\) là tia phân giác của góc \(BDE\)
c) Vẽ \(OK \bot DE\) và gọi \(I\) là tiếp điểm của \((O)\) với \(AB\), khi đó \(OI \bot AB\). Xét hai tam giác vuông: \(IDO\) và \(KDO\), ta có:
\(DO\) chung
\(\widehat = \widehat \) (chứng minh trên)
Vậy \(ΔIDO\) = \(ΔKDO\)\( ⇒ OI = OK\)
Điều này chứng tỏ rằng \(OK\) là bán kính của \((O)\) và \(OK \bot DE\) nên \(K\) là tiếp điểm của \(DE\) với \((O)\) hay \(DE\) tiếp xúc với đường tròn \((O)\)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư